In this study, water hyacinth powder-reinforced polymer composites with eggshell filler material are investigated for their mechanical, absorption, morphological, thermal, and characterization properties. Hyacinth pow...In this study, water hyacinth powder-reinforced polymer composites with eggshell filler material are investigated for their mechanical, absorption, morphological, thermal, and characterization properties. Hyacinth powder particles have not been extensively studied in polymer composites. This study investigates the use of eggshell powder for composites made from hyacinth powder. The use of hyacinth powder improves the mechanical properties of composites. With the help of the powder particles, composite samples are produced by compression moulding using an epoxy polymer matrix. 5% eggshell filler varied from 18.25 to 33.64 MPa for tensile strength, 40.28–49.66 MPa for flexural strength, and 2.45–4.75 J for impact strength. X-ray diffraction and Fourier transforms can be used to determine chemical groups, function groups, and crystallinity indexes. Powder particles can be observed by scanning electron microscopes in terms of their bonding behavior, eggshell powder combinations, and primary- and secondary-phase material absorption. According to the research presented in this paper, commercial particleboard applications can benefit substantially from hyacinth powder particles reinforced with eggshell fillers.展开更多
文摘In this study, water hyacinth powder-reinforced polymer composites with eggshell filler material are investigated for their mechanical, absorption, morphological, thermal, and characterization properties. Hyacinth powder particles have not been extensively studied in polymer composites. This study investigates the use of eggshell powder for composites made from hyacinth powder. The use of hyacinth powder improves the mechanical properties of composites. With the help of the powder particles, composite samples are produced by compression moulding using an epoxy polymer matrix. 5% eggshell filler varied from 18.25 to 33.64 MPa for tensile strength, 40.28–49.66 MPa for flexural strength, and 2.45–4.75 J for impact strength. X-ray diffraction and Fourier transforms can be used to determine chemical groups, function groups, and crystallinity indexes. Powder particles can be observed by scanning electron microscopes in terms of their bonding behavior, eggshell powder combinations, and primary- and secondary-phase material absorption. According to the research presented in this paper, commercial particleboard applications can benefit substantially from hyacinth powder particles reinforced with eggshell fillers.