To analyze the bottom slope's effect on the sloshing liquid in floating liquefied natural gas(FLNG)membrane tanks,a simulation model is built and applied to describe the liquid behavior in a sloshing container.The...To analyze the bottom slope's effect on the sloshing liquid in floating liquefied natural gas(FLNG)membrane tanks,a simulation model is built and applied to describe the liquid behavior in a sloshing container.The free surface motion is simulated by the volume-of-fluid method and the standard k-εturbulence model.Experimental data and numerical results from references are used to validate the accuracy of the proposed simulation model.To study the influence of the sloped bottom on the liquid sloshing,different slope sizes and filling ratios are numerically simulated at the lowest natural frequency.The results reveal that the natural frequency can be determined by the average peak values of hydrodynamic parameters.The natural frequency and pressure loading on the tank walls decrease with the increase in the slope size.The peak pressure on the wall decreases by 5.45 kPa with the increase in the slope ratio from 5%to 20%.However,the relationship between the peak pressure and slope ratio is more significant with lower filling rates.Liquid behavior is more stable and independent with the change of the slope structure at a high filling rate(60%).The results of numerical simulation and modeling are expected to provide reference data for the design and operation of the FLNG system.展开更多
This paper focuses on numerical simulations of bluff body aerodynamics with three-dimensional CFD(computational fluid dynamics) modeling,where a computational scheme for fluid-structure interactions is implemented.The...This paper focuses on numerical simulations of bluff body aerodynamics with three-dimensional CFD(computational fluid dynamics) modeling,where a computational scheme for fluid-structure interactions is implemented.The choice of an appropriate turbulence model for the computational modeling of bluff body aerodynamics using both two-dimensional and three-dimensional CFD numerical simulations is also considered.An efficient mesh control method which employs the mesh deformation technique is proposed to achieve better simulation results.Several long-span deck sections are chosen as examples which were stationary and pitching at a high Reynolds number.With the proposed CFD method and turbulence models,the force coefficients and flutter derivatives thus obtained are compared with the experimental measurement results and computed values completely from commercial software.Finally,a discussion on the effects of oscillation amplitude on the flutter instability of a bluff body is carried out with extended numerical simulations.These numerical analysis results demonstrate that the proposed three-dimensional CFD method,with proper turbulence modeling,has good accuracy and significant benefits for aerodynamic analysis and computational FSI studies of bluff bodies.展开更多
基金The National Natural Science Foundation of China(No.51905093)the Natural Science Foundation of Jiangsu Province for Young Scholars(No.BK20180392)。
文摘To analyze the bottom slope's effect on the sloshing liquid in floating liquefied natural gas(FLNG)membrane tanks,a simulation model is built and applied to describe the liquid behavior in a sloshing container.The free surface motion is simulated by the volume-of-fluid method and the standard k-εturbulence model.Experimental data and numerical results from references are used to validate the accuracy of the proposed simulation model.To study the influence of the sloped bottom on the liquid sloshing,different slope sizes and filling ratios are numerically simulated at the lowest natural frequency.The results reveal that the natural frequency can be determined by the average peak values of hydrodynamic parameters.The natural frequency and pressure loading on the tank walls decrease with the increase in the slope size.The peak pressure on the wall decreases by 5.45 kPa with the increase in the slope ratio from 5%to 20%.However,the relationship between the peak pressure and slope ratio is more significant with lower filling rates.Liquid behavior is more stable and independent with the change of the slope structure at a high filling rate(60%).The results of numerical simulation and modeling are expected to provide reference data for the design and operation of the FLNG system.
基金supported by the National Natural Science Foundation of China(Grant No.11172055)the Foundation for the Author of National Excellent Doctoral(Grant No.2002030)
文摘This paper focuses on numerical simulations of bluff body aerodynamics with three-dimensional CFD(computational fluid dynamics) modeling,where a computational scheme for fluid-structure interactions is implemented.The choice of an appropriate turbulence model for the computational modeling of bluff body aerodynamics using both two-dimensional and three-dimensional CFD numerical simulations is also considered.An efficient mesh control method which employs the mesh deformation technique is proposed to achieve better simulation results.Several long-span deck sections are chosen as examples which were stationary and pitching at a high Reynolds number.With the proposed CFD method and turbulence models,the force coefficients and flutter derivatives thus obtained are compared with the experimental measurement results and computed values completely from commercial software.Finally,a discussion on the effects of oscillation amplitude on the flutter instability of a bluff body is carried out with extended numerical simulations.These numerical analysis results demonstrate that the proposed three-dimensional CFD method,with proper turbulence modeling,has good accuracy and significant benefits for aerodynamic analysis and computational FSI studies of bluff bodies.