An improved delayed detached eddy simulation (IDDES) method based on the k-x-SST (shear stress transport) turbulence model was applied to predict the unsteady vortex breakdown past an 80o/65o double-delta wing (...An improved delayed detached eddy simulation (IDDES) method based on the k-x-SST (shear stress transport) turbulence model was applied to predict the unsteady vortex breakdown past an 80o/65o double-delta wing (DDW), where the angles of attack (AOAs) range from 30° to 40°. Firstly, the IDDES model and the relative numerical methods were validated by simulating the massively separated flow around an NACA0021 straight wing at the AOA of 60°. The fluctuation properties of the lift and pressure coefficients were analyzed and compared with the available measurements. For the DDW case, the computations were compared with such mea-surements as the mean lift, drag, pitching moment, pressure coefficients and breakdown locations. Furthermore, the unsteady properties were investigated in detail, such as the frequencies of force and moments, pressure fluctuation on the upper surface, typical vortex breakdown patterns at three moments, and the distributions of kinetic turbulence energy at a stream wise section. Two dominated modes are observed, in which their Strouhal numbers are 1.0 at the AOAs of 30°, 32° and 34° and 0.7 at the AOAs of 36o, 38° and 40°. The breakdown vortex always moves upstream and downstream and its types change alternatively. Furthermore, the vortex can be identified as breakdown or not through the mean pressure, root mean square of pressure, or even through correlation analysis.展开更多
An unsteady Reynolds averaged Navier–Stokes(URANS) method combined with a rigid dynamic mesh technique was developed to simulate unsteady flows around complex configurations during pitching motion. First, a test case...An unsteady Reynolds averaged Navier–Stokes(URANS) method combined with a rigid dynamic mesh technique was developed to simulate unsteady flows around complex configurations during pitching motion. First, a test case with the NACA0012 airfoil was selected to validate the numerical methods and our in-house codes. Then, we evaluated the unsteady flows around an advanced aircraft model during harmonic pitching motion at high incidence. The effects of pitching motion on the hysteresis of aerodynamic force, the evolution of the leading-edge vortex, and the distribution of pressure on the model's surface were analyzed in detail. The roles of several significant parameters such as the reduced frequency and pitching amplitude were revealed. Several conclusions were found: pitching motion would delay the initiation of the leading-edge vortex, strengthen the vorticity, postpone the occurrence of vortex breakdown, and weaken the massively separated flows, thus causing additional aerodynamic force. Two categories of critical reduced frequency have been found, which divide the influence of reduced frequency on aerodynamic force into three stages, called the linear increasing range, slowly increasing range, and constant range. The first-order phase lag between the aerodynamic force and the incidence is a constant that is independent of the amplitude when the reduced frequency is sufficiently high. A scaled maximum value of C_L is proposed; it depends only on the reduced frequency(instead of the amplitude), and increases linearly when the reduced frequency is sufficiently low.展开更多
基金co-supported by Innovative Foundation of CARDCthe National Natural Science Foundation of China (No. 11072129)
文摘An improved delayed detached eddy simulation (IDDES) method based on the k-x-SST (shear stress transport) turbulence model was applied to predict the unsteady vortex breakdown past an 80o/65o double-delta wing (DDW), where the angles of attack (AOAs) range from 30° to 40°. Firstly, the IDDES model and the relative numerical methods were validated by simulating the massively separated flow around an NACA0021 straight wing at the AOA of 60°. The fluctuation properties of the lift and pressure coefficients were analyzed and compared with the available measurements. For the DDW case, the computations were compared with such mea-surements as the mean lift, drag, pitching moment, pressure coefficients and breakdown locations. Furthermore, the unsteady properties were investigated in detail, such as the frequencies of force and moments, pressure fluctuation on the upper surface, typical vortex breakdown patterns at three moments, and the distributions of kinetic turbulence energy at a stream wise section. Two dominated modes are observed, in which their Strouhal numbers are 1.0 at the AOAs of 30°, 32° and 34° and 0.7 at the AOAs of 36o, 38° and 40°. The breakdown vortex always moves upstream and downstream and its types change alternatively. Furthermore, the vortex can be identified as breakdown or not through the mean pressure, root mean square of pressure, or even through correlation analysis.
基金supported by the Innovation Foundation of CARDCthe Innovation Foundation of LSAI of CARDC
文摘An unsteady Reynolds averaged Navier–Stokes(URANS) method combined with a rigid dynamic mesh technique was developed to simulate unsteady flows around complex configurations during pitching motion. First, a test case with the NACA0012 airfoil was selected to validate the numerical methods and our in-house codes. Then, we evaluated the unsteady flows around an advanced aircraft model during harmonic pitching motion at high incidence. The effects of pitching motion on the hysteresis of aerodynamic force, the evolution of the leading-edge vortex, and the distribution of pressure on the model's surface were analyzed in detail. The roles of several significant parameters such as the reduced frequency and pitching amplitude were revealed. Several conclusions were found: pitching motion would delay the initiation of the leading-edge vortex, strengthen the vorticity, postpone the occurrence of vortex breakdown, and weaken the massively separated flows, thus causing additional aerodynamic force. Two categories of critical reduced frequency have been found, which divide the influence of reduced frequency on aerodynamic force into three stages, called the linear increasing range, slowly increasing range, and constant range. The first-order phase lag between the aerodynamic force and the incidence is a constant that is independent of the amplitude when the reduced frequency is sufficiently high. A scaled maximum value of C_L is proposed; it depends only on the reduced frequency(instead of the amplitude), and increases linearly when the reduced frequency is sufficiently low.