期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
快速城镇化地区土地利用景观格局演化及影响因素——以苏州市为例
1
作者 任浩洋 刘艳军 +2 位作者 王肖惠 孙宏日 付慧 《东北师大学报(自然科学版)》 CAS 北大核心 2024年第1期143-153,共11页
以快速城镇化地区的代表城市——苏州市为研究对象,根据2000及2015年苏州市域土地利用数据,采用土地利用转移矩阵以及景观生态学方法,对研究区土地利用及景观格局演化特点与其空间异质性影响因素进行了探讨.结果表明:(1)苏州市城镇化进... 以快速城镇化地区的代表城市——苏州市为研究对象,根据2000及2015年苏州市域土地利用数据,采用土地利用转移矩阵以及景观生态学方法,对研究区土地利用及景观格局演化特点与其空间异质性影响因素进行了探讨.结果表明:(1)苏州市城镇化进程中土地利用变化特点明显,耕地保有量大幅度减少,退居第二大优势地类,水域、耕地及城乡工矿居民用地面积趋于均衡化.(2)各地类景观斑块特点各异,呈现复杂化的演变趋势;景观格局空间差异显著,城市核心区与边缘区分别呈现单一性集聚与多样化破碎的景观特点,其中市辖区较县级市具有更大的差异性.(3)不同强度的人类活动影响下景观格局特点不同,随着人类活动影响加剧,景观破碎程度呈现“倒U”式的景观破碎化特点. 展开更多
关键词 土地利用 景观格局 景观指数 移动窗口法 苏州市
下载PDF
Seismic velocity inversion based on CNN-LSTM fusion deep neural network 被引量:5
2
作者 Cao Wei Guo Xue-Bao +4 位作者 Tian Feng Shi Ying Wang Wei-Hong sun hong-ri Ke Xuan 《Applied Geophysics》 SCIE CSCD 2021年第4期499-514,593,共17页
Based on the CNN-LSTM fusion deep neural network,this paper proposes a seismic velocity model building method that can simultaneously estimate the root mean square(RMS)velocity and interval velocity from the common-mi... Based on the CNN-LSTM fusion deep neural network,this paper proposes a seismic velocity model building method that can simultaneously estimate the root mean square(RMS)velocity and interval velocity from the common-midpoint(CMP)gather.In the proposed method,a convolutional neural network(CNN)Encoder and two long short-term memory networks(LSTMs)are used to extract spatial and temporal features from seismic signals,respectively,and a CNN Decoder is used to recover RMS velocity and interval velocity of underground media from various feature vectors.To address the problems of unstable gradients and easily fall into a local minimum in the deep neural network training process,we propose to use Kaiming normal initialization with zero negative slopes of rectifi ed units and to adjust the network learning process by optimizing the mean square error(MSE)loss function with the introduction of a freezing factor.The experiments on testing dataset show that CNN-LSTM fusion deep neural network can predict RMS velocity as well as interval velocity more accurately,and its inversion accuracy is superior to that of single neural network models.The predictions on the complex structures and Marmousi model are consistent with the true velocity variation trends,and the predictions on fi eld data can eff ectively correct the phase axis,improve the lateral continuity of phase axis and quality of stack section,indicating the eff ectiveness and decent generalization capability of the proposed method. 展开更多
关键词 Velocity inversion CNN-LSTM fusion deep neural network weight initialization training strategy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部