The resonator integrated optic gyros(RIOGs) based on the Sagnac effect have gained extensive attention in navigation and guidance systems due to their predominant advantages: high theoretical accuracy and simple in...The resonator integrated optic gyros(RIOGs) based on the Sagnac effect have gained extensive attention in navigation and guidance systems due to their predominant advantages: high theoretical accuracy and simple integration. However, the problems of losing lock and low lock-in accuracy are the bottlenecks, which restrict the development of digital RIOGs. Therefore, a multilevel laser frequency lock-in technique has been proposed in this Letter to address these problems. The experimental results show that lock-in accuracy can be improved one order higher and without losing lock in a variable temperature environment. Then, a digital miniaturized RIOG prototype(18 cm × 18 cm × 20 cm) has been produced, and long-term(1 h) bias stability of 26.6 deg/h is successfully demonstrated.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51635011,61640601,61571406,and 51727808)the Outstanding Youth Talents Program of Shanxi Province(No.2016002)+1 种基金the Science and Technology on Electronic Test&Measurement Laboratory(No.11010311)the Shanxi "1331 KSC"
文摘The resonator integrated optic gyros(RIOGs) based on the Sagnac effect have gained extensive attention in navigation and guidance systems due to their predominant advantages: high theoretical accuracy and simple integration. However, the problems of losing lock and low lock-in accuracy are the bottlenecks, which restrict the development of digital RIOGs. Therefore, a multilevel laser frequency lock-in technique has been proposed in this Letter to address these problems. The experimental results show that lock-in accuracy can be improved one order higher and without losing lock in a variable temperature environment. Then, a digital miniaturized RIOG prototype(18 cm × 18 cm × 20 cm) has been produced, and long-term(1 h) bias stability of 26.6 deg/h is successfully demonstrated.