The particulate toughening behaviour of epoxy resins modified by ductile thermoplastics is elucidated here by various bridging models. The experimental data for three different epoxy/PSF sys- tems are presented to ill...The particulate toughening behaviour of epoxy resins modified by ductile thermoplastics is elucidated here by various bridging models. The experimental data for three different epoxy/PSF sys- tems are presented to illustrate the trend of the toughening characteristics. The conventional continuous bridging model is shown to have underestimated the effect of the particulate toughening. A joint appli- cation of the discrete bridging model and the multiple bridging model, however, shows promising result for modified epoxy systems such as AG80/DDS/PSF and E51/DDS/PSF. These models also provide quantitative descriptions for the crack pinning phenomenon previously observed by Fu and Sun in AG80/DDS/PSF.展开更多
基金The project sponsored by the National Natural Science Foundation of China under the Grant 5870134.
文摘The particulate toughening behaviour of epoxy resins modified by ductile thermoplastics is elucidated here by various bridging models. The experimental data for three different epoxy/PSF sys- tems are presented to illustrate the trend of the toughening characteristics. The conventional continuous bridging model is shown to have underestimated the effect of the particulate toughening. A joint appli- cation of the discrete bridging model and the multiple bridging model, however, shows promising result for modified epoxy systems such as AG80/DDS/PSF and E51/DDS/PSF. These models also provide quantitative descriptions for the crack pinning phenomenon previously observed by Fu and Sun in AG80/DDS/PSF.