High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon ...High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.展开更多
Effective thermal performance of oscillating heat pipe(OHP)is driven by inside pressure distribution.Heat transfer phenomena were reported in terms of pressure and frequency of pressure fluctuation in multi loop OHP c...Effective thermal performance of oscillating heat pipe(OHP)is driven by inside pressure distribution.Heat transfer phenomena were reported in terms of pressure and frequency of pressure fluctuation in multi loop OHP charged with aqueous Al2O3 and MWCNTs/Al2O3 nanoparticles.The influences on thermal resistance of aqueous Al2O3,MWCNTs as well as the hybrid of them in OHP having 3 mm in inner diameter were investigated at 60% filling ratio.Experimental results show that thermal characteristics are significantly inter-related with pressure distribution and strongly depend upon the number of pressure fluctuations with time.Frequency of pressure depends upon the power input in evaporative section.A little inclusion of MWCNTs into aqueous Al2O3 at 60% filling ratio achieves the highest fluctuation frequency and the lowest thermal resistance at any evaporator power input though different nanofluids cause different thermal performances of OHPs.展开更多
基金Project(NRF-2014R1A1A4A03005148)supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,Korea
文摘High-thermal conductivity enhancement of nanofluid is one of the promising topics of the nanoscience research field. This work reports the experimental study on the preparation of graphene(GN) and multi-walled carbon nanotubes(MWCNTs) based nanofluids with the assistance of sodium dodecyl benzene sulfonate(SDBS) and sodium dodecyl sulfate(SDS) surfactants, and their thermal behaviors. The present work suggests not a solution, but a solution approach and deduces a new conclusion by trying to resolve the agglomeration problem and improve the dispersibility of nanoparticles in the base fluid. The analysis results of FESEM, thermal conductivity, diffusivity, effusivity and heat transfer coefficient enhancement ratio of nanofluid with surfactants SDS and SDBS expose strong evidence of the dispersing effect of surfactant on the making of nanofluid.
基金Project(NRF-2012R1A1A4A01002052)supported by Basic Science Research Program through the National Research Foundation(NRF)funded by the Ministry of Education,Science and Technology of Korea
文摘Effective thermal performance of oscillating heat pipe(OHP)is driven by inside pressure distribution.Heat transfer phenomena were reported in terms of pressure and frequency of pressure fluctuation in multi loop OHP charged with aqueous Al2O3 and MWCNTs/Al2O3 nanoparticles.The influences on thermal resistance of aqueous Al2O3,MWCNTs as well as the hybrid of them in OHP having 3 mm in inner diameter were investigated at 60% filling ratio.Experimental results show that thermal characteristics are significantly inter-related with pressure distribution and strongly depend upon the number of pressure fluctuations with time.Frequency of pressure depends upon the power input in evaporative section.A little inclusion of MWCNTs into aqueous Al2O3 at 60% filling ratio achieves the highest fluctuation frequency and the lowest thermal resistance at any evaporator power input though different nanofluids cause different thermal performances of OHPs.