期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Adaptive phase field modelling of crack propagation in orthotropic functionally graded materials
1
作者 Hirshikesh Emilio Martínez-Paneda sundararajan natarajan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期185-195,共11页
In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is emp... In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is employed for adaptive mesh refinement.The proposed approach is capable of capturing the fracture process with a localized mesh refinement that provides notable gains in computational efficiency.The implementation is validated against experimental data and other numerical experiments on orthotropic materials with different material orientations.The results reveal an increase in the stiffness and the maximum force with increasing material orientation angle.The study is then extended to the analysis of orthotropic FGMs.It is observed that,if the gradation in fracture properties is neglected,the material gradient plays a secondary role,with the fracture behaviour being dominated by the orthotropy of the material.However,when the toughness increases along the crack propagation path,a substantial gain in fracture resistance is observed. 展开更多
关键词 Functionally graded materials Phase field fracture Polygonal finite element method Orthotropic materials Recovery based error indicator
下载PDF
A Cell-Based Linear Smoothed Finite Element Method for Polygonal Topology Optimization
2
作者 Changkye Lee sundararajan natarajan +1 位作者 Seong-Hoon Kee Jurng-Jae Yee 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第6期1615-1634,共20页
The aim of this work is to employ a modified cell-based smoothed finite element method(S-FEM)for topology optimization with the domain discretized with arbitrary polygons.In the present work,the linear polynomial basi... The aim of this work is to employ a modified cell-based smoothed finite element method(S-FEM)for topology optimization with the domain discretized with arbitrary polygons.In the present work,the linear polynomial basis function is used as the weight function instead of the constant weight function used in the standard S-FEM.This improves the accuracy and yields an optimal convergence rate.The gradients are smoothed over each smoothing domain,then used to compute the stiffness matrix.Within the proposed scheme,an optimum topology procedure is conducted over the smoothing domains.Structural materials are distributed over each smoothing domain and the filtering scheme relies on the smoothing domain.Numerical tests are carried out to pursue the performance of the proposed optimization by comparing convergence,efficiency and accuracy. 展开更多
关键词 Smoothed finite element method linear smoothing function topology optimization solid isotropic material with penalization(SIMP) polygonal finite element cell
下载PDF
Bubble-Enriched Smoothed Finite Element Methods for Nearly-Incompressible Solids
3
作者 Changkye Lee sundararajan natarajan +3 位作者 Jack S.Hale Zeike A.Taylor Jurng-Jae Yee Stephane P.A.Bordas 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期411-436,共26页
This work presents a locking-free smoothed finite element method(S-FEM)for the simulation of soft matter modelled by the equations of quasi-incompressible hyperelasticity.The proposed method overcomes well-known issue... This work presents a locking-free smoothed finite element method(S-FEM)for the simulation of soft matter modelled by the equations of quasi-incompressible hyperelasticity.The proposed method overcomes well-known issues of standard finite element methods(FEM)in the incompressible limit:the over-estimation of stiffness and sensitivity to severely distorted meshes.The concepts of cell-based,edge-based and node-based S-FEMs are extended in this paper to three-dimensions.Additionally,a cubic bubble function is utilized to improve accuracy and stability.For the bubble function,an additional displacement degree of freedom is added at the centroid of the element.Several numerical studies are performed demonstrating the stability and validity of the proposed approach.The obtained results are compared with standard FEM and with analytical solutions to show the effectiveness of the method. 展开更多
关键词 Strain smoothing smoothed finite element method bubble functions HYPERELASTICITY mesh distortion
下载PDF
A FEniCS implementation of the phase field method for quasi-static brittle fracture 被引量:3
4
作者 HIRSHIKESH sundararajan natarajan Ratna Kumar ANNABATTULA 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2019年第2期380-396,共17页
In the recent years, the phase field method for simulating fracture problems has received considerable attention. This is due to the salient features of the method: 1) it can be incorporated into any conventional fini... In the recent years, the phase field method for simulating fracture problems has received considerable attention. This is due to the salient features of the method: 1) it can be incorporated into any conventional finite element software;2) has a scalar damage variable is used to represent the discontinuous surface implicitly and 3) the crack initiation and subsequent propagation and branching are treated with less complexity. Within this framework, the linear momentum equations are coupled with the diffusion type equation, which describes the evolution of the damage variable. The coupled nonlinear system of partial differential equations are solved in a 'staggered? approach. The present work discusses the implementation of the phase field method for brittle fracture within the open-source finite element software, FEniCS. The FEniCS provides a framework for the automated solutions of the partial differential equations. The details of the implementation which forms the core of the analysis are presented. The implementation is validated by solving a few benchmark problems and comparing the results with the open literature. 展开更多
关键词 phase field method FEniCS BRITTLE FRACTURE CRACK PROPAGATION VARIATIONAL theory of FRACTURE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部