Manipulating materials at the nanometer scale is challenging, particularly if alignment with nanoscale electrodes is desired. Here, we describe a lithography-free, self-aligned nanotrench ablation (SANTA) technique ...Manipulating materials at the nanometer scale is challenging, particularly if alignment with nanoscale electrodes is desired. Here, we describe a lithography-free, self-aligned nanotrench ablation (SANTA) technique to create nanoscale "trenches" in a polymer like poly(methyl methacrylate) (PMMA). The nanotrenches are self-aligned with carbon nanotube (CNT) or graphene ribbon electrodes through a simple Joule heating process. Using simulations and experiments we investigated how the Joule power, ambient temperature, PMMA thickness, and substrate properties affect the spatial resolution of this technique. We achieved sub-20 nm nanotrenches, for the first time, by lowering the ambient temperature and reducing the PMMA thickness. We also demonstrated a functioning nanoscale resistive memory (RRAM) bit self- aligned with a CNT control device, achieved through the SANTA approach. This technique provides an elegant and inexpensive method to probe nanoscale devices using self-aligned electrodes, without the use of conventional alignment or lithography steps.展开更多
基金We thank Dr. Eilam Yalon and Dr. Ilya Karpov for technical support and helpful discussions. We acknowledge partial support from the National Science Foundation (NSF) CAREER grant 1430530, SRC/Intel grant 2014-IN-2532, the Stanford SystemX Alliance, and the Stanford Nano- and Quantum Science and Engineering (NQSE) Postdoctoral Fellowship (F. X.).
文摘Manipulating materials at the nanometer scale is challenging, particularly if alignment with nanoscale electrodes is desired. Here, we describe a lithography-free, self-aligned nanotrench ablation (SANTA) technique to create nanoscale "trenches" in a polymer like poly(methyl methacrylate) (PMMA). The nanotrenches are self-aligned with carbon nanotube (CNT) or graphene ribbon electrodes through a simple Joule heating process. Using simulations and experiments we investigated how the Joule power, ambient temperature, PMMA thickness, and substrate properties affect the spatial resolution of this technique. We achieved sub-20 nm nanotrenches, for the first time, by lowering the ambient temperature and reducing the PMMA thickness. We also demonstrated a functioning nanoscale resistive memory (RRAM) bit self- aligned with a CNT control device, achieved through the SANTA approach. This technique provides an elegant and inexpensive method to probe nanoscale devices using self-aligned electrodes, without the use of conventional alignment or lithography steps.