In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may manifest.This necessitates the restoration of the imag...In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may manifest.This necessitates the restoration of the image to its original quality.The challenge lies in regenerating significantly compressed images into a state in which these become identifiable.Therefore,this study focuses on the restoration of JPEG images subjected to substantial degradation caused by maximum lossy compression using Generative Adversarial Networks(GAN).The generator in this network is based on theU-Net architecture.It features a newhourglass structure that preserves the characteristics of the deep layers.In addition,the network incorporates two loss functions to generate natural and high-quality images:Low Frequency(LF)loss and High Frequency(HF)loss.HF loss uses a pretrained VGG-16 network and is configured using a specific layer that best represents features.This can enhance the performance in the high-frequency region.In contrast,LF loss is used to handle the low-frequency region.The two loss functions facilitate the generation of images by the generator,which can mislead the discriminator while accurately generating high-and low-frequency regions.Consequently,by removing the blocking effects frommaximum lossy compressed images,images inwhich identities could be recognized are generated.This study represents a significant improvement over previous research in terms of the image resolution performance.展开更多
The objective of style transfer is to maintain the content of an image while transferring the style of another image.However,conventional methods face challenges in preserving facial features,especially in Korean port...The objective of style transfer is to maintain the content of an image while transferring the style of another image.However,conventional methods face challenges in preserving facial features,especially in Korean portraits where elements like the“Gat”(a traditional Korean hat)are prevalent.This paper proposes a deep learning network designed to perform style transfer that includes the“Gat”while preserving the identity of the face.Unlike traditional style transfer techniques,the proposed method aims to preserve the texture,attire,and the“Gat”in the style image by employing image sharpening and face landmark,with the GAN.The color,texture,and intensity were extracted differently based on the characteristics of each block and layer of the pre-trained VGG-16,and only the necessary elements during training were preserved using a facial landmark mask.The head area was presented using the eyebrow area to transfer the“Gat”.Furthermore,the identity of the face was retained,and style correlation was considered based on the Gram matrix.To evaluate performance,we introduced a metric using PSNR and SSIM,with an emphasis on median values through new weightings for style transfer in Korean portraits.Additionally,we have conducted a survey that evaluated the content,style,and naturalness of the transferred results,and based on the assessment,we can confidently conclude that our method to maintain the integrity of content surpasses the previous research.Our approach,enriched by landmarks preservation and diverse loss functions,including those related to“Gat”,outperformed previous researches in facial identity preservation.展开更多
基金supported by the Technology Development Program(S3344882)funded by the Ministry of SMEs and Startups(MSS,Korea).
文摘In the context of high compression rates applied to Joint Photographic Experts Group(JPEG)images through lossy compression techniques,image-blocking artifacts may manifest.This necessitates the restoration of the image to its original quality.The challenge lies in regenerating significantly compressed images into a state in which these become identifiable.Therefore,this study focuses on the restoration of JPEG images subjected to substantial degradation caused by maximum lossy compression using Generative Adversarial Networks(GAN).The generator in this network is based on theU-Net architecture.It features a newhourglass structure that preserves the characteristics of the deep layers.In addition,the network incorporates two loss functions to generate natural and high-quality images:Low Frequency(LF)loss and High Frequency(HF)loss.HF loss uses a pretrained VGG-16 network and is configured using a specific layer that best represents features.This can enhance the performance in the high-frequency region.In contrast,LF loss is used to handle the low-frequency region.The two loss functions facilitate the generation of images by the generator,which can mislead the discriminator while accurately generating high-and low-frequency regions.Consequently,by removing the blocking effects frommaximum lossy compressed images,images inwhich identities could be recognized are generated.This study represents a significant improvement over previous research in terms of the image resolution performance.
基金supported by Metaverse Lab Program funded by the Ministry of Science and ICT(MSIT),and the Korea Radio Promotion Association(RAPA).
文摘The objective of style transfer is to maintain the content of an image while transferring the style of another image.However,conventional methods face challenges in preserving facial features,especially in Korean portraits where elements like the“Gat”(a traditional Korean hat)are prevalent.This paper proposes a deep learning network designed to perform style transfer that includes the“Gat”while preserving the identity of the face.Unlike traditional style transfer techniques,the proposed method aims to preserve the texture,attire,and the“Gat”in the style image by employing image sharpening and face landmark,with the GAN.The color,texture,and intensity were extracted differently based on the characteristics of each block and layer of the pre-trained VGG-16,and only the necessary elements during training were preserved using a facial landmark mask.The head area was presented using the eyebrow area to transfer the“Gat”.Furthermore,the identity of the face was retained,and style correlation was considered based on the Gram matrix.To evaluate performance,we introduced a metric using PSNR and SSIM,with an emphasis on median values through new weightings for style transfer in Korean portraits.Additionally,we have conducted a survey that evaluated the content,style,and naturalness of the transferred results,and based on the assessment,we can confidently conclude that our method to maintain the integrity of content surpasses the previous research.Our approach,enriched by landmarks preservation and diverse loss functions,including those related to“Gat”,outperformed previous researches in facial identity preservation.