In rice, the initiation of tillers is staggered and temporally spaced, but maturity is synchronous. Duration of growth in a later-initiated tiller on a higher culm node is shorter and it contributes less biomass and g...In rice, the initiation of tillers is staggered and temporally spaced, but maturity is synchronous. Duration of growth in a later-initiated tiller on a higher culm node is shorter and it contributes less biomass and grain yield. The present investigation attempts to discover the manner in which ordered pattern of senescence in basipetal succession impacts source capacity of tillers in two contrasting rice cultivars, namely Lalat (high tillering) and MGD-106 (medium tillering) during the dry season of 2009 and ascertain how tiller production capacity influences dry matter partitioning and tiller dynamics of the plant. In both the rice cultivars, the progress of senescence among different types of tillers was indicated by gradual decline of photosynthetic pigments, total nitrogen and protein concentrations and increase of lipid peroxidation and peroxidase activity of the flag leaf, which affected photosynthetic efficiency. The effects were more pernicious on the newer tillers compared to older tillers. It was observed that metabolic dominance of the older tillers over newer tillers could be accrued due to higher photosynthetic source capacity of the former than that of the latter. It was concluded that flag leaf of a later-initiated tiller is less tolerant to senescence induced photo-oxidative stress, which decreases both source and sink activities. Increase of tiller number and order in rice increases vulnerability of the later-initiated tillers for oxidative stress and grain filling.展开更多
文摘In rice, the initiation of tillers is staggered and temporally spaced, but maturity is synchronous. Duration of growth in a later-initiated tiller on a higher culm node is shorter and it contributes less biomass and grain yield. The present investigation attempts to discover the manner in which ordered pattern of senescence in basipetal succession impacts source capacity of tillers in two contrasting rice cultivars, namely Lalat (high tillering) and MGD-106 (medium tillering) during the dry season of 2009 and ascertain how tiller production capacity influences dry matter partitioning and tiller dynamics of the plant. In both the rice cultivars, the progress of senescence among different types of tillers was indicated by gradual decline of photosynthetic pigments, total nitrogen and protein concentrations and increase of lipid peroxidation and peroxidase activity of the flag leaf, which affected photosynthetic efficiency. The effects were more pernicious on the newer tillers compared to older tillers. It was observed that metabolic dominance of the older tillers over newer tillers could be accrued due to higher photosynthetic source capacity of the former than that of the latter. It was concluded that flag leaf of a later-initiated tiller is less tolerant to senescence induced photo-oxidative stress, which decreases both source and sink activities. Increase of tiller number and order in rice increases vulnerability of the later-initiated tillers for oxidative stress and grain filling.