In this work,the electrochemical behaviors of SAM2X5 Fe-based amorphous alloy coating and hard chromium coating were comparatively studied in 3.5 wt% NaCl solution.In comparison with the hard chromium coating,the SAM2...In this work,the electrochemical behaviors of SAM2X5 Fe-based amorphous alloy coating and hard chromium coating were comparatively studied in 3.5 wt% NaCl solution.In comparison with the hard chromium coating,the SAM2X5 coating exhibited a wider and stable passive region with lower passive current density in the potentiodynamic polarization and showed a considerably lower current density at different anodic potentials in the potentiostatic polarization.In order to understand the passivation mechanism of the Fe-based amorphous coating,the components of the passive films formed at various polarization potentials were examined by X-ray photoelectron spectroscopy.The synergistic effect of Mo,W,Mn and Cr in the passive films was systemically analyzed.It has been revealed that Mo and W facilitate the formation of compact and stable Cr2O3 passive film at lower potentials,and the substantial enrichment of Mn in the passive film enhances the passivation ability at relatively higher potentials.The deep understanding of the passivation characteristics in multicomponent alloy systems could provide a guide for the design of corrosion-resistant amorphous alloy coatings for engineering applications.展开更多
Hot corrosion behaviors of the 921A alloy and Fe-based amorphous coating induced by KCl-10% ZnCl_(2) and KCl-55% ZnCl_(2) salts at 450℃ in air for 40 h were investigated.Results show that the 921A alloy suffers more ...Hot corrosion behaviors of the 921A alloy and Fe-based amorphous coating induced by KCl-10% ZnCl_(2) and KCl-55% ZnCl_(2) salts at 450℃ in air for 40 h were investigated.Results show that the 921A alloy suffers more serious corrosion damage than the coating and KCl-55% ZnCl_(2) salts are more corrosive than KCl-10% ZnCl_(2) salts.In the two salts,an Fe_(2)O_(3) layer is formed on the 921A alloy surface,while an outer Fe-rich oxide layer and an inner Cr-rich oxide layer are formed on the surface of the coating.Moreover,a certain amount of metal chloride can be found at the oxide/alloy(coating)interface,which can be explained by "active oxidation".However,the corrosion resistance of the Fe-based amorphous coating did not achieve the desired results,probably because the intersplats in the coating serve as corrosion diffusing channels,which facilitate the corrosion damage rate.Nevertheless,the coating is still in amorphous state after hot corrosion exposure.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51471166, 51131006 and 51171119)the College Youth Scholar Fostering Program of Liaoning Province (No. LJQ2014015)
文摘In this work,the electrochemical behaviors of SAM2X5 Fe-based amorphous alloy coating and hard chromium coating were comparatively studied in 3.5 wt% NaCl solution.In comparison with the hard chromium coating,the SAM2X5 coating exhibited a wider and stable passive region with lower passive current density in the potentiodynamic polarization and showed a considerably lower current density at different anodic potentials in the potentiostatic polarization.In order to understand the passivation mechanism of the Fe-based amorphous coating,the components of the passive films formed at various polarization potentials were examined by X-ray photoelectron spectroscopy.The synergistic effect of Mo,W,Mn and Cr in the passive films was systemically analyzed.It has been revealed that Mo and W facilitate the formation of compact and stable Cr2O3 passive film at lower potentials,and the substantial enrichment of Mn in the passive film enhances the passivation ability at relatively higher potentials.The deep understanding of the passivation characteristics in multicomponent alloy systems could provide a guide for the design of corrosion-resistant amorphous alloy coatings for engineering applications.
基金supported by GuangDong Basic and Applied Basic Research Foundation(No.2020A1515110128).
文摘Hot corrosion behaviors of the 921A alloy and Fe-based amorphous coating induced by KCl-10% ZnCl_(2) and KCl-55% ZnCl_(2) salts at 450℃ in air for 40 h were investigated.Results show that the 921A alloy suffers more serious corrosion damage than the coating and KCl-55% ZnCl_(2) salts are more corrosive than KCl-10% ZnCl_(2) salts.In the two salts,an Fe_(2)O_(3) layer is formed on the 921A alloy surface,while an outer Fe-rich oxide layer and an inner Cr-rich oxide layer are formed on the surface of the coating.Moreover,a certain amount of metal chloride can be found at the oxide/alloy(coating)interface,which can be explained by "active oxidation".However,the corrosion resistance of the Fe-based amorphous coating did not achieve the desired results,probably because the intersplats in the coating serve as corrosion diffusing channels,which facilitate the corrosion damage rate.Nevertheless,the coating is still in amorphous state after hot corrosion exposure.