BACKGROUND Colorectal polyps that develop via the conventional adenoma-carcinoma sequence[e.g.,tubular adenoma(TA)]often progress to malignancy and are closely associated with changes in the composition of the gut mic...BACKGROUND Colorectal polyps that develop via the conventional adenoma-carcinoma sequence[e.g.,tubular adenoma(TA)]often progress to malignancy and are closely associated with changes in the composition of the gut microbiome.There is limited research concerning the microbial functions and gut microbiomes associated with colorectal polyps that arise through the serrated polyp pathway,such as hyperplastic polyps(HP).Exploration of microbiome alterations asso-ciated with HP and TA would improve the understanding of mechanisms by which specific microbes and their metabolic pathways contribute to colorectal carcinogenesis.AIM To investigate gut microbiome signatures,microbial associations,and microbial functions in HP and TA patients.METHODS Full-length 16S rRNA sequencing was used to characterize the gut microbiome in stool samples from control participants without polyps[control group(CT),n=40],patients with HP(n=52),and patients with TA(n=60).Significant differences in gut microbiome composition and functional mechanisms were identified between the CT group and patients with HP or TA.Analytical techniques in this study included differential abundance analysis,co-occurrence network analysis,and differential pathway analysis.RESULTS Colorectal cancer(CRC)-associated bacteria,including Streptococcus gallolyticus(S.gallolyticus),Bacteroides fragilis,and Clostridium symbiosum,were identified as characteristic microbial species in TA patients.Mediterraneibacter gnavus,associated with dysbiosis and gastrointestinal diseases,was significantly differentially abundant in the HP and TA groups.Functional pathway analysis revealed that HP patients exhibited enrichment in the sulfur oxidation pathway exclusively,whereas TA patients showed dominance in pathways related to secondary metabolite biosynthesis(e.g.,mevalonate);S.gallolyticus was a major contributor.Co-occurrence network and dynamic network analyses revealed co-occurrence of dysbiosis-associated bacteria in HP patients,whereas TA patients exhibited co-occurrence of CRC-associated bacteria.Furthermore,the co-occurrence of SCFA-producing bacteria was lower in TA patients than HP patients.CONCLUSION This study revealed distinct gut microbiome signatures associated with pathways of colorectal polyp development,providing insights concerning the roles of microbial species,functional pathways,and microbial interactions in colorectal carcinogenesis.展开更多
基金Supported by Chulabhorn Royal Academy(Fundamental Fund:Fiscal year 2022 by National Science Research and Innovation Fund),No.FRB650039/0240 Project Code 165422.
文摘BACKGROUND Colorectal polyps that develop via the conventional adenoma-carcinoma sequence[e.g.,tubular adenoma(TA)]often progress to malignancy and are closely associated with changes in the composition of the gut microbiome.There is limited research concerning the microbial functions and gut microbiomes associated with colorectal polyps that arise through the serrated polyp pathway,such as hyperplastic polyps(HP).Exploration of microbiome alterations asso-ciated with HP and TA would improve the understanding of mechanisms by which specific microbes and their metabolic pathways contribute to colorectal carcinogenesis.AIM To investigate gut microbiome signatures,microbial associations,and microbial functions in HP and TA patients.METHODS Full-length 16S rRNA sequencing was used to characterize the gut microbiome in stool samples from control participants without polyps[control group(CT),n=40],patients with HP(n=52),and patients with TA(n=60).Significant differences in gut microbiome composition and functional mechanisms were identified between the CT group and patients with HP or TA.Analytical techniques in this study included differential abundance analysis,co-occurrence network analysis,and differential pathway analysis.RESULTS Colorectal cancer(CRC)-associated bacteria,including Streptococcus gallolyticus(S.gallolyticus),Bacteroides fragilis,and Clostridium symbiosum,were identified as characteristic microbial species in TA patients.Mediterraneibacter gnavus,associated with dysbiosis and gastrointestinal diseases,was significantly differentially abundant in the HP and TA groups.Functional pathway analysis revealed that HP patients exhibited enrichment in the sulfur oxidation pathway exclusively,whereas TA patients showed dominance in pathways related to secondary metabolite biosynthesis(e.g.,mevalonate);S.gallolyticus was a major contributor.Co-occurrence network and dynamic network analyses revealed co-occurrence of dysbiosis-associated bacteria in HP patients,whereas TA patients exhibited co-occurrence of CRC-associated bacteria.Furthermore,the co-occurrence of SCFA-producing bacteria was lower in TA patients than HP patients.CONCLUSION This study revealed distinct gut microbiome signatures associated with pathways of colorectal polyp development,providing insights concerning the roles of microbial species,functional pathways,and microbial interactions in colorectal carcinogenesis.