Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection ...Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.展开更多
With conjunction observations of electromagnetic fields and plasma from Time History of Events and Macroscale Interactions during Substorm(THEMIS)in the near-Earth magnetotail,we investigate the spatial and temporal p...With conjunction observations of electromagnetic fields and plasma from Time History of Events and Macroscale Interactions during Substorm(THEMIS)in the near-Earth magnetotail,we investigate the spatial and temporal properties of substorm dipolarizations in the near-Earth plasma sheet(NEPS)during a substorm at 03:23 UT on 12 February 2008.Substorm dipolarizations with different features are detected by three near-Earth THEMIS probes(THA(P5),THD(P3)and THE(P4))in the magnetotail.In the current sheet with a large plasma beta value(β>2,whereβis the ratio of the plasma thermal pressure to the magnetic pressure),the dipolarization within the substorm onset region,(−10.4,2.8,−2.6)RE_gsm,has a large initial magnetic field elevation angle,θ>60°,θ=arctan(Bz/(Bx2+By2)1/2),and is accompanied by energetic ion(tens to hundred keV)dispersionless injection detected by THD(P3).This substorm onset dipolarization is characterized by Bx and By components around 0 nT with significant fluctuations.The Bz component increases sharply and its subsequent magnitude approaches the total magnetic field,Bt.The maximum value of the elevation angle approaches 85°during the later substorm expansion phase.In the NEPS withβ~1,the dipolarization outside the substorm onset region is characterized by a magnetic elevation angle with a small beginning value ofθ<45°and following multi-step enhancements during the substorm expansion phase.The maximum value of the elevation angle approaches to 70°during the later substorm expansion phase.Our observation results indicate that characteristics of dipolarization with a large beginning elevation angle within the substorm onset region provide a new indicator to identify substorm onset location.展开更多
We report multi-spacecraft observations of ULF waves from Van Allen Probes(RBSP), Magnetospheric Multiscale(MMS), Time History of Events and Macroscale Interactions during Substorm(THEMIS), and Geostationary Operation...We report multi-spacecraft observations of ULF waves from Van Allen Probes(RBSP), Magnetospheric Multiscale(MMS), Time History of Events and Macroscale Interactions during Substorm(THEMIS), and Geostationary Operational Environmental Satellites(GOES).On August 31, 2015, global-scale poloidal waves were observed in data from RBSP-B, GOES and THEMIS from L=4 to L=8 over a wide range of magnetic local time(MLT). The polarization states varied towards purely poloidal polarity. In two consecutive orbits over 18 hours, RBSP-A and RBSP-B recorded gradual variation of the polarization states of the poloidal waves; the ratio(|B_a|/|B_r|) decreased from 0.82 to 0.13. After the variation of polarization states, the poloidal ULF waves became very purely poloidal waves, localized in both L and MLT. We identify the poloidal wave as second harmonic mode with a large azimuthal wave number(m) of –232. From RBSP particle measurements we find evidence that the high-m poloidal waves during the polarization variations were powered by inward radial gradients and bump-on-tail ion distributions through the N=1 drift-bounce resonance. Most of the time, the dominant free energy source was inward radial gradients, compared with the positive gradient in the energy distribution of the bump-on-tail ion distributions.展开更多
An ion flux dropout near the dipolarization front(DF) at around XGSM=-11 REin the Earth's plasma sheet was observed by Time History of Events and Macroscale Interaction during substorms(THEMIS) on March31, 2009. T...An ion flux dropout near the dipolarization front(DF) at around XGSM=-11 REin the Earth's plasma sheet was observed by Time History of Events and Macroscale Interaction during substorms(THEMIS) on March31, 2009. The ion differential energy fluxes at energies from 450 e V to 150 ke V measured by the ESA and SST instruments from THC began to decrease about 2 s before the detection of the DF and reached a local minimum 6 s later. Then, the ion fluxes gradually increased to form a dropout around the DF. The spatial extent of the dropout was about 4,000 km. For energies above 20 ke V, the ion fluxes after the dropout are greater than those before it,contrary to the fluxes at energies below 20 ke V. The associated ion density variation indicates that the ion flux dropout coincides with the ion density dropout. Taking advantage of multipoint observations, THD, THC, and THE detected the same DF consecutively. Only THC detected an obvious ion flux dropout; THD observed an indistinct one about 2 s before THC; no high-energy(E [ 30 ke V) ion flux dropout was observed by THE. Our study suggests that the ion flux dropout may evolve withthe earthward-propagating DF, and its properties can depend on locations relative to the DF.展开更多
基金supported by NSFC grants(42188101,42174209,42174207)the Specialized Research Fund for State Key Laboratories of Chinathe Strategic Pioneer Program on Space Science II,Chinese Academy of Sciences,grants XDA15350201,XDA15052500.
文摘Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow.
基金supported by the National Natural Science Foundation of China(NSFC)under grants 41731070,41674167,41574161the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences,grants XDA15052500,XDA15350201 and XDA15011401the Specialized Research Fund for State Key Laboratories of China.
文摘With conjunction observations of electromagnetic fields and plasma from Time History of Events and Macroscale Interactions during Substorm(THEMIS)in the near-Earth magnetotail,we investigate the spatial and temporal properties of substorm dipolarizations in the near-Earth plasma sheet(NEPS)during a substorm at 03:23 UT on 12 February 2008.Substorm dipolarizations with different features are detected by three near-Earth THEMIS probes(THA(P5),THD(P3)and THE(P4))in the magnetotail.In the current sheet with a large plasma beta value(β>2,whereβis the ratio of the plasma thermal pressure to the magnetic pressure),the dipolarization within the substorm onset region,(−10.4,2.8,−2.6)RE_gsm,has a large initial magnetic field elevation angle,θ>60°,θ=arctan(Bz/(Bx2+By2)1/2),and is accompanied by energetic ion(tens to hundred keV)dispersionless injection detected by THD(P3).This substorm onset dipolarization is characterized by Bx and By components around 0 nT with significant fluctuations.The Bz component increases sharply and its subsequent magnitude approaches the total magnetic field,Bt.The maximum value of the elevation angle approaches 85°during the later substorm expansion phase.In the NEPS withβ~1,the dipolarization outside the substorm onset region is characterized by a magnetic elevation angle with a small beginning value ofθ<45°and following multi-step enhancements during the substorm expansion phase.The maximum value of the elevation angle approaches to 70°during the later substorm expansion phase.Our observation results indicate that characteristics of dipolarization with a large beginning elevation angle within the substorm onset region provide a new indicator to identify substorm onset location.
基金supported by NNSFC grants 41574161,41731070,and 41574159the Strategic Pionner Program on Space Science,Chinese Academy of Sciences,grants XDA15052500 and XDA15350201
文摘We report multi-spacecraft observations of ULF waves from Van Allen Probes(RBSP), Magnetospheric Multiscale(MMS), Time History of Events and Macroscale Interactions during Substorm(THEMIS), and Geostationary Operational Environmental Satellites(GOES).On August 31, 2015, global-scale poloidal waves were observed in data from RBSP-B, GOES and THEMIS from L=4 to L=8 over a wide range of magnetic local time(MLT). The polarization states varied towards purely poloidal polarity. In two consecutive orbits over 18 hours, RBSP-A and RBSP-B recorded gradual variation of the polarization states of the poloidal waves; the ratio(|B_a|/|B_r|) decreased from 0.82 to 0.13. After the variation of polarization states, the poloidal ULF waves became very purely poloidal waves, localized in both L and MLT. We identify the poloidal wave as second harmonic mode with a large azimuthal wave number(m) of –232. From RBSP particle measurements we find evidence that the high-m poloidal waves during the polarization variations were powered by inward radial gradients and bump-on-tail ion distributions through the N=1 drift-bounce resonance. Most of the time, the dominant free energy source was inward radial gradients, compared with the positive gradient in the energy distribution of the bump-on-tail ion distributions.
基金supported by the National Natural Science Foundation of China(40774081)Ministry of Science and Technology of China(2011CB811404)the Specialized Research Fund for State Key Laboratories
文摘An ion flux dropout near the dipolarization front(DF) at around XGSM=-11 REin the Earth's plasma sheet was observed by Time History of Events and Macroscale Interaction during substorms(THEMIS) on March31, 2009. The ion differential energy fluxes at energies from 450 e V to 150 ke V measured by the ESA and SST instruments from THC began to decrease about 2 s before the detection of the DF and reached a local minimum 6 s later. Then, the ion fluxes gradually increased to form a dropout around the DF. The spatial extent of the dropout was about 4,000 km. For energies above 20 ke V, the ion fluxes after the dropout are greater than those before it,contrary to the fluxes at energies below 20 ke V. The associated ion density variation indicates that the ion flux dropout coincides with the ion density dropout. Taking advantage of multipoint observations, THD, THC, and THE detected the same DF consecutively. Only THC detected an obvious ion flux dropout; THD observed an indistinct one about 2 s before THC; no high-energy(E [ 30 ke V) ion flux dropout was observed by THE. Our study suggests that the ion flux dropout may evolve withthe earthward-propagating DF, and its properties can depend on locations relative to the DF.