期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Sea urchin‐like NiMoO_(4) nanorod arrays as highly efficient bifunctional catalysts for electrocatalytic/photovoltage‐driven urea electrolysis 被引量:2
1
作者 Chenxin Chen suqi he +3 位作者 Kamran Dastafkan Zehua Zou Qingxiang Wang Chuan Zhao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第5期1267-1276,共10页
Developing multifunctional electrocatalysts with high catalytic activity,longterm stability,and low cost is essential for electrocatalytic energy conversion.Herein,sea urchinlike NiMoO_(4) nanorod arrays grown on nick... Developing multifunctional electrocatalysts with high catalytic activity,longterm stability,and low cost is essential for electrocatalytic energy conversion.Herein,sea urchinlike NiMoO_(4) nanorod arrays grown on nickel foam has been developed as a bifunctional electrocatalyst for urea oxidation and hydrogen evolution.The NiMoO_(4)‐200/NF catalyst exhibits efficient activity toward hydrogen evolution reaction with a low overpotential of only 68 mV in 1.0 mol/L KOH to gain a current density of 10 mA cm^(–2).The NiMoO_(4)‐300/NF catalyst exhibits a prominent oxygen evolution reaction(OER)catalytic activity with an overpotential of 288 mV at 50 mA cm^(–2),as well as for urea oxidation reaction with an ultralow potential of 1.36 V at 10 mA cm^(–2).The observed difference in electrocatalytic activity and selectivity,derived by temperature variation,is ascribed to different lattice oxygen contents.The lattice oxygen of NiMoO_(4)‐300/NF is more than that of NiMoO_(4)‐200/NF,and the lattice oxygen is conducive to the progress of OER.A urea electrolyzer was assembled with Ni‐MoO_(4)‐200/NF and NiMoO_(4)‐300/NF as cathode and anode respectively,delivering a current density of 10 mA cm^(–2)at a cell voltage of merely 1.38 V.The NiMoO_(4)nanorod arrays has also been successfully applied for photovoltage‐driven urea electrolysis and hydrogen production,revealing its great potential for solar‐driven energy conversion. 展开更多
关键词 NiMoO4 nanorod Bifunctional electrocatalyst Urea electrolysis Photovoltage‐driven Lattice oxygen Sea urchin‐like
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部