In view of the lack of wheat genetic resources with high amylose and high resistant starch contents in the present world,the grain starch components and SGP-1 (SGP-A1,SGP-B1 and SGP-D1) protein composition of 43 black...In view of the lack of wheat genetic resources with high amylose and high resistant starch contents in the present world,the grain starch components and SGP-1 (SGP-A1,SGP-B1 and SGP-D1) protein composition of 43 black-kernel wheat genetic resources such as Jizi 439 were identified by SDS-PAGE electrophoresis detection.The results showed that 11 materials were lack of SGP-A1,and no materials had SGP-B1 and SGP-D1 deletion.Seven materials were identified to have an amylose content more than 30% of the total starch.A total of 12 materials were selected for the determination of resistant starch content,and five materials were found to have a high resistant starch content.The above results lay a foundation for wheat breeding for high resistant starch content.展开更多
基金Supported by National Science and Technology Support Program(2013BAD01B02-11)National Natural Science Foundation of China(31201209)+1 种基金National Key Research and Development Project(2016YFD0100102-5)Science and Technology Support Program of Hebei Province(16226320D)
文摘In view of the lack of wheat genetic resources with high amylose and high resistant starch contents in the present world,the grain starch components and SGP-1 (SGP-A1,SGP-B1 and SGP-D1) protein composition of 43 black-kernel wheat genetic resources such as Jizi 439 were identified by SDS-PAGE electrophoresis detection.The results showed that 11 materials were lack of SGP-A1,and no materials had SGP-B1 and SGP-D1 deletion.Seven materials were identified to have an amylose content more than 30% of the total starch.A total of 12 materials were selected for the determination of resistant starch content,and five materials were found to have a high resistant starch content.The above results lay a foundation for wheat breeding for high resistant starch content.