We propose an effective stopping criterion for higher-order fast sweeping schemes for static Hamilton-Jacobi equations based on ratios of three consecutive iterations. To design the new stopping criterion we analyze t...We propose an effective stopping criterion for higher-order fast sweeping schemes for static Hamilton-Jacobi equations based on ratios of three consecutive iterations. To design the new stopping criterion we analyze the convergence of the first-order Lax-Friedrichs sweeping scheme by using the theory of nonlinear iteration. In addition, we propose a fifth-order Weighted PowerENO sweeping scheme for static Hamilton-Jacobi equations with convex Hamiltonians and present numerical examples that validate the effectiveness of the new stopping criterion.展开更多
基金supported by DGICYT MTM2008-03597Ramon y Cajal Programsupported by NSF DMS # 0810104
文摘We propose an effective stopping criterion for higher-order fast sweeping schemes for static Hamilton-Jacobi equations based on ratios of three consecutive iterations. To design the new stopping criterion we analyze the convergence of the first-order Lax-Friedrichs sweeping scheme by using the theory of nonlinear iteration. In addition, we propose a fifth-order Weighted PowerENO sweeping scheme for static Hamilton-Jacobi equations with convex Hamiltonians and present numerical examples that validate the effectiveness of the new stopping criterion.