Thermal parameters are important variables that have great influence on life time of turbine vanes.Therefore,accurate prediction of the thermal parameters is essential.In this study,a numerical approach for conjugate ...Thermal parameters are important variables that have great influence on life time of turbine vanes.Therefore,accurate prediction of the thermal parameters is essential.In this study,a numerical approach for conjugate heat transfer(CHT)and computational fluid dynamics(CFD)is used to investigate thermal sensitivity of a transonic guide vane which is fully film-cooled by 199 film holes.Thermal barrier coating(TBC),i.e.,the typical TBC and a new one as the candidate TBC,and turbulence intensity(Tu),i.e.,Tu=3.3%,10%and 20%,are two variables used for the present study.At first the external surface temperatures of the vane material are compared.Next,the TBC surface temperatures are considered.Results show the major role of the lower thermal conductivity of TBC which results in the lower and more uniform temperature on the external surface of the vane substrate.Finally,the thermal sensitivity is presented in terms of the percentage reduction of the external surface temperatures of the vane material and the structural temperatures of the vane material at midspan,including the variations of average and maximum vane temperatures.Results show that TBC and Tu have significant effects on the external surface and structural temperatures of the vane substrate.The lower thermal conductivity of TBC leads to the higher difference between the thermal conductivity of the vane substrate and TBC,the reduction of heat transfer and the more uniform temperature within the vane structure.The results also show more effective protection for the average vane temperature from the two TBCs at higher Tus.However,Tu does not significantly affect the reduction of the maximum vane temperature even though the new TBC,which has the very low thermal conductivity,is used.展开更多
文摘Thermal parameters are important variables that have great influence on life time of turbine vanes.Therefore,accurate prediction of the thermal parameters is essential.In this study,a numerical approach for conjugate heat transfer(CHT)and computational fluid dynamics(CFD)is used to investigate thermal sensitivity of a transonic guide vane which is fully film-cooled by 199 film holes.Thermal barrier coating(TBC),i.e.,the typical TBC and a new one as the candidate TBC,and turbulence intensity(Tu),i.e.,Tu=3.3%,10%and 20%,are two variables used for the present study.At first the external surface temperatures of the vane material are compared.Next,the TBC surface temperatures are considered.Results show the major role of the lower thermal conductivity of TBC which results in the lower and more uniform temperature on the external surface of the vane substrate.Finally,the thermal sensitivity is presented in terms of the percentage reduction of the external surface temperatures of the vane material and the structural temperatures of the vane material at midspan,including the variations of average and maximum vane temperatures.Results show that TBC and Tu have significant effects on the external surface and structural temperatures of the vane substrate.The lower thermal conductivity of TBC leads to the higher difference between the thermal conductivity of the vane substrate and TBC,the reduction of heat transfer and the more uniform temperature within the vane structure.The results also show more effective protection for the average vane temperature from the two TBCs at higher Tus.However,Tu does not significantly affect the reduction of the maximum vane temperature even though the new TBC,which has the very low thermal conductivity,is used.