期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Recent advances in graphene-based phase change composites for thermal energy storage and management
1
作者 Qiang Zhu Pin Jin Ong +4 位作者 Si Hui Angela Goh Reuben J.Yeo suxi wang Zhiyuan Liu Xian Jun Loh 《Nano Materials Science》 EI CAS CSCD 2024年第2期115-138,共24页
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ... Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized. 展开更多
关键词 Phase change material NANOCOMPOSITES Solar energy Sustainable energy Thermo-regulation
下载PDF
Bottom-Up Engineering Strategies for High-Performance Thermoelectric Materials 被引量:1
2
作者 Qiang Zhu suxi wang +4 位作者 Xizu wang Ady Suwardi Ming Hui Chua Xiang Yun Debbie Soo Jianwei Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第8期56-93,共38页
The recent advancements in thermoelectric materials are largely credited to two factors,namely established physical theories and advanced materials engineering methods.The developments in the physical theories have co... The recent advancements in thermoelectric materials are largely credited to two factors,namely established physical theories and advanced materials engineering methods.The developments in the physical theories have come a long way from the“phonon glass electron crystal”paradigm to the more recent band convergence and nanostructuring,which consequently results in drastic improvement in the thermoelectric figure of merit value.On the other hand,the progresses in materials fabrication methods and processing technologies have enabled the discovery of new physical mechanisms,hence further facilitating the emergence of high-performance thermoelectric materials.In recent years,many comprehensive review articles are focused on various aspects of thermoelectrics ranging from thermoelectric materials,physical mechanisms and materials process techniques in particular with emphasis on solid state reactions.While bottom-up approaches to obtain thermoelectric materials have widely been employed in thermoelectrics,comprehensive reviews on summarizing such methods are still rare.In this review,we will outline a variety of bottom-up strategies for preparing high-performance thermoelectric materials.In addition,state-of-art,challenges and future opportunities in this domain will be commented. 展开更多
关键词 THERMOELECTRIC NANOSTRUCTURES BOTTOM-UP Synthesis NANOMATERIALS
下载PDF
Polyethylene glycol/polylactic acid block co‐polymers as solid–solid phase change materials 被引量:1
3
作者 Xiang YDSoo Joseph K.Muiruri +11 位作者 Jayven CCYeo Zhuang MPng Anqi Sng Huiqing Xie Rong Ji suxi wang Hongfei Liu Jianwei Xu Xian JLoh Qingyu Yan Zibiao Li Qiang Zhu 《SmartMat》 2023年第3期108-119,共12页
Phase change materials(PCMs)are promising thermal energy storage materials due to their high specific latent heat.Conventional PCMs typically exploit the solid–liquid(s–l)transition.However,leakage and leaching are ... Phase change materials(PCMs)are promising thermal energy storage materials due to their high specific latent heat.Conventional PCMs typically exploit the solid–liquid(s–l)transition.However,leakage and leaching are common issues for solid–liquid PCMs,which have to be addressed before usage in practical applications.In contrast,solid–solid(s–s)PCMs would naturally overcome these issues due to their inherent form stability and homogeneity.In this study,we report a new type of s–s PCM based on chemically linked polyethylene glycol(PEG,the PCM portion)with polylactic acid(PLA,the support portion)in the form of a block co‐polymer.Solid‐solid latent heat of up to 56 J/g could be achieved,with melting points of between 44°C and 55°C.For comparison,PEG was physically mixed into a PLA matrix to form a PEG:PLA composite.However,the composite material saw leakage of up to 9%upon heating,with a corresponding loss in thermal storage capacity.In contrast,the mPEG/PLA block co‐polymers were found to be completely homogeneous and thermally stable even when heated above its phase transition temperature,with no observable leakage,demonstrating the superiority of chemical linking strategies in ensuring form stability. 展开更多
关键词 block co‐polymer chemically linked form‐stable phase change material(PCM) polyethylene glycol(PEG) polylactic acid(PLA) solid–solid transition
原文传递
Face Masks in the New COVID-19 Normal: Materials, Testing,and Perspectives 被引量:8
4
作者 Ming Hui Chua Weiren Cheng +14 位作者 Shermin Simin Goh Junhua Kong Bing Li Jason Y.CLim Lu Mao suxi wang Kun Xue Le Yang Enyi Ye Kangyi Zhang Wun Chet Davy Cheong Beng Hoon Tan Zibiao Li Ban Hock Tan Xian Jun Loh 《Research》 EI CAS 2020年第1期1245-1284,共40页
The increasing prevalence of infectious diseases in recent decades has posed a serious threat to public health.Routes of transmission differ,but the respiratory droplet or airborne route has the greatest potential to ... The increasing prevalence of infectious diseases in recent decades has posed a serious threat to public health.Routes of transmission differ,but the respiratory droplet or airborne route has the greatest potential to disrupt social intercourse,while being amenable to prevention by the humble facemask.Different types of masks give different levels of protection to the user.The ongoing COVID-19 pandemic has even resulted in a global shortage of face masks and the raw materials that go into them,driving individuals to self-produce masks from household items.At the same time,research has been accelerated towards improving the quality and performance of face masks,e.g.,by introducing properties such as antimicrobial activity and superhydrophobicity.This review will cover mask-wearing from the public health perspective,the technical details of commercial and home-made masks,and recent advances in mask engineering,disinfection,and materials and discuss the sustainability of mask-wearing and mask production into the future. 展开更多
关键词 DETAILS PREVENTION driving
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部