期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Tracking and Monitoring Leaf Development, Coupling Law and Regulation Techniques during Flowering Period of Hybrid Foxtail Millet (<i>Setaria italica</i>(L.) P. Beauv.) Parental Lines 被引量:1
1
作者 Qiang li Dan liu +5 位作者 Guoxing Ma Yanhua Shi Yanjiao Cui Xiaodong Zhang suying li Zhengli liu 《Agricultural Sciences》 2021年第2期84-111,共28页
The determining factor of<em> Setaria italica </em>(L.) P. Beauv. is the coupling of its flowering stage and outcrossing rate which leads to low and unstable seed yields in self-pollinated foxtail millet h... The determining factor of<em> Setaria italica </em>(L.) P. Beauv. is the coupling of its flowering stage and outcrossing rate which leads to low and unstable seed yields in self-pollinated foxtail millet hybrids and thereby limits their large-scale application. In this study, Datong 27, Datong 29 and gu 83 were screened and identified through meticulous observations of their pollination habitats. High exposure rate, degree of exposure and plump of stigma are good factors to accept foreign pollen. Datong 27 and Datong 29 have some additional characteristics, such as long filaments and exposed and full anthers that contain a large amount of pollen. We transformed into a series of stigma-exposed and plump sterile lines that easily accepted exotic pollen. New restorer lines with anthers that were full of powder and exhibited quick recovery, which improved the parental lines’ heterosexual characteristics. By tracking and monitoring the leaf development of the new sterile and restorer lines, a coupling law of leaf development was determined and a series of flowering control measures were formulated. These factors ensured that the parental lines encounter one another during the flowering stage. By utilizing fertilizer and water, the vitality of the female stigma, amount of powder scattered and powder loosening time were prolonged, which increased hybrid seed yields from 1500 to 3000 kg/hm<sup>2</sup>. These findings were helpful in resolving the technical problems of seed production that restricted the propagation of foxtail millet hybrids and supporting future large-scale applications. 展开更多
关键词 Foxtail Millet HYBRIDS Leaf Age Coupling Law Flowering Regulation Seed Production Technology
下载PDF
Genetic Diversity and Classification of Chinese Elite Foxtail Millet [Setaria italica (L.) P. Beauv.] Revealed by Acid-PAGE Prolamin 被引量:1
2
作者 Guoxing Ma Qiang li +4 位作者 suying li Zhengli liu Yanjiao Cui Jing Zhang Dan liu 《Agricultural Sciences》 2022年第3期404-428,共25页
Arid and semi-arid regions of China account for more than half of the country. Because of drought resistance and high nutritive value, elite foxtail millet (Setaria Italica (L.) P. Beauv.) is one of the most important... Arid and semi-arid regions of China account for more than half of the country. Because of drought resistance and high nutritive value, elite foxtail millet (Setaria Italica (L.) P. Beauv.) is one of the most important cereal crops in China. Evaluation of germplasm and genetic diversity of foxtail millet is still in its infancy, but prolamin could play an important role as a protein marker. To investigate the genetic diversity and population structure of foxtail millet from different ecological zones of China, 90 accessions of foxtail millet were collected from three major ecological areas: North, Northwest, and Northeast China. The prolamin contents were examined by acid polyacrylamide gel electrophoresis (acid-PAGE). Five to twenty-two prolamin bands appeared in tested varieties, of which were polymorphic, so prolamin patterns of foxtail millet varieties can be used in variety identification and evaluation. Structure analysis identified six groups, which matches their pedigree information but not their geographic origins. This indicated a high degree (87.78%) of consistency with a phylogenetic classification based on SSR. The results showed prolamin banding patterns were an effective method for analyzing foxtail millet genetic variability. 展开更多
关键词 Foxtail Millet [Setaria italica (L.) P. Beauv.] Seed Storage Protein Protein Polymorphism PROLAMIN
下载PDF
Heterotic Classes and Utilization Patterns in Chinese Foxtail Millet [<i>Setaria italica</i>(L.) P. Beauv] 被引量:6
3
作者 Zhengli liu Guihua Bai +3 位作者 Dadong Zhang Chengsong Zhu Xiaoli Ren suying li 《Agricultural Sciences》 2014年第14期1392-1406,共15页
Utilization of heterosis to develop hybrid cultivars can significantly increase yield of most crops including foxtail millet. However, previous foxtail millet hybrid cultivars have been largely developed from crosses ... Utilization of heterosis to develop hybrid cultivars can significantly increase yield of most crops including foxtail millet. However, previous foxtail millet hybrid cultivars have been largely developed from crosses between sterile lines and conventional varieties or between sterile lines and varieties that are geographically distent from the sterile lines. The research on classification of heterotic classes and determinetaion of heterotic patterns has not been reported, which results in uncertainty in selection of parents for crosses and delays progress in utilization of high yielding hybrids in large-scale commercial production. In this study, a core collection of 128 accessions from China was grouped into six classes using combined analyses of population structure, pedigree, and clustering. The classification was conducted based mainly on molecular clustering of genotypic data, also considered the population structure and mathematical clustering using phenotypic data, and was finally validated through pedigree analysis. According to the transgressive and superstandard heterosis for grain yield, plant height, panicle length, panicle diameter, single panicle weight, grain weight per panicle, and 1000-grain weight collected from an incomplete-diallel-cross experiment, we identified six superior heterosis patterns (C2/C1, C2/C4, C2/C5, C2/C6, C1/C5 and C4/C5) and four inferior heterosis patterns (C1/C3, C1/C4, C1/C6 and C4/C6), and explored their potential applications in millet hybrid breeding. This study laid a foundation for effective use of foxtail millet heterosis in improving millet hybrid yield. 展开更多
关键词 Foxtail MILLET Heterotic CLASSES Heterotic Pattern Molecular Clustering POPULATION Structure
下载PDF
Innovation of the New Superior Quality Foxtail Millet [<i>Setaria italica</i>(L.) P.Beauv] Variety-Jigu32 with Characteristics of Stress Resistance, Stable and High Yield and Its Physiological Mechanism
4
作者 suying li Shengjun An +2 位作者 Zhengli liu Ruhong Cheng Zhijun Wang 《Agricultural Sciences》 2014年第4期304-316,共13页
In main foxtail millet growing regions of China, natural disasters happen frequently, causing losses in production and finance. Therefore, it is urgently needed to breed new superior quality foxtail millet varieties w... In main foxtail millet growing regions of China, natural disasters happen frequently, causing losses in production and finance. Therefore, it is urgently needed to breed new superior quality foxtail millet varieties with stress resistance, stable and high production, and, so as to stabilize millet production and promote millet industry development. Jigu32, a new foxtail millet variety with stable, high-yield and superior qualities, was developed using Target Character Gene Bank breeding method, and its physiological mechanism was studied as well. Results showed that the prominent characteristics of Jigu32 were as follows: 1) strong stress resistance and stable yielding;2) high yielding;3) rich calcium content and superior qualities;4) excellent comprehensive characteristics. In 2010 National Foxtail Millet Regional Trials, the weather was tough. Severe drought occurred in some experimental stations while in some others, continuous rain, low temperature and little sunlight appeared. However, with the outstanding stress resistance, Jigu32 achieved the highest yields, and the yields were very stable under different conditions. Per unit yield of Jigu32 reached to5133.3 kg/hm2, which was the highest in the trials, increasing 9.42% compared with the controls. Calcium content of Jigu32 was 121 mg/kg in the grain, and the taste, nutrition and commodity qualities were optimal. Therefore, Jigu32 was rated as the national secondary superior quality foxtail millet. The study showed that the physiological mechanism of Jigu32’s merits was based on the improved activities of peroxidase (POD), superoxide dismutase (SOD), 6 phosphate dehydrogenase (G6PDH), glutamine synthetase (GS) and glutamic dehydrogenase (GDH), and on its higher absorption ability and conversion efficiency of N, P, K. POD, SOD and G6PDH of Jigu32 were more active in each development phase, leading to higher resistance to adversity and aging;glutamine synthetase (GS) and glutamate dehydrogenase (GDH) of Jigu32 were more active, resulting in higher assimilation and transformation ability of nutrients. It is of great significance to promote the development of Jigu32, and it will be beneficial to sustainable, stable agricultural development, and thus orderly and stably boost the development of the millet industry in our country. The research on its physiological mechanism of stable and high yielding will provide theoretical support while breeding new stable and high-yield foxtail millet varieties later. 展开更多
关键词 Foxtail MILLET STABLE YIELD High YIELD BREED Physiological Mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部