期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Data-augmented landslide displacement prediction using generative adversarial network
1
作者 Qi Ge Jin Li +2 位作者 suzanne lacasse Hongyue Sun Zhongqiang Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4017-4033,共17页
Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limit... Landslides are destructive natural disasters that cause catastrophic damage and loss of life worldwide.Accurately predicting landslide displacement enables effective early warning and risk management.However,the limited availability of on-site measurement data has been a substantial obstacle in developing data-driven models,such as state-of-the-art machine learning(ML)models.To address these challenges,this study proposes a data augmentation framework that uses generative adversarial networks(GANs),a recent advance in generative artificial intelligence(AI),to improve the accuracy of landslide displacement prediction.The framework provides effective data augmentation to enhance limited datasets.A recurrent GAN model,RGAN-LS,is proposed,specifically designed to generate realistic synthetic multivariate time series that mimics the characteristics of real landslide on-site measurement data.A customized moment-matching loss is incorporated in addition to the adversarial loss in GAN during the training of RGAN-LS to capture the temporal dynamics and correlations in real time series data.Then,the synthetic data generated by RGAN-LS is used to enhance the training of long short-term memory(LSTM)networks and particle swarm optimization-support vector machine(PSO-SVM)models for landslide displacement prediction tasks.Results on two landslides in the Three Gorges Reservoir(TGR)region show a significant improvement in LSTM model prediction performance when trained on augmented data.For instance,in the case of the Baishuihe landslide,the average root mean square error(RMSE)increases by 16.11%,and the mean absolute error(MAE)by 17.59%.More importantly,the model’s responsiveness during mutational stages is enhanced for early warning purposes.However,the results have shown that the static PSO-SVM model only sees marginal gains compared to recurrent models such as LSTM.Further analysis indicates that an optimal synthetic-to-real data ratio(50%on the illustration cases)maximizes the improvements.This also demonstrates the robustness and effectiveness of supplementing training data for dynamic models to obtain better results.By using the powerful generative AI approach,RGAN-LS can generate high-fidelity synthetic landslide data.This is critical for improving the performance of advanced ML models in predicting landslide displacement,particularly when there are limited training data.Additionally,this approach has the potential to expand the use of generative AI in geohazard risk management and other research areas. 展开更多
关键词 Machine learning(ML) Time series Generative adversarial network(GAN) Three Gorges reservoir(TGR) Landslide displacement prediction
下载PDF
Bayesian partial pooling to reduce uncertainty in overcoring rock stress estimation
2
作者 Yu Feng Ke Gao suzanne lacasse 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1192-1201,共10页
The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely u... The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely used to estimate the full stress tensors in rocks by independent regression analysis of the data from each OC test.However,such customary independent analysis of individual OC tests,known as no pooling,is liable to yield unreliable test-specific stress estimates due to various uncertainty sources involved in the OC method.To address this problem,a practical and no-cost solution is considered by incorporating into OC data analysis additional information implied within adjacent OC tests,which are usually available in OC measurement campaigns.Hence,this paper presents a Bayesian partial pooling(hierarchical)model for combined analysis of adjacent OC tests.We performed five case studies using OC test data made at a nuclear waste repository research site of Sweden.The results demonstrate that partial pooling of adjacent OC tests indeed allows borrowing of information across adjacent tests,and yields improved stress tensor estimates with reduced uncertainties simultaneously for all individual tests than they are independently analysed as no pooling,particularly for those unreliable no pooling stress estimates.A further model comparison shows that the partial pooling model also gives better predictive performance,and thus confirms that the information borrowed across adjacent OC tests is relevant and effective. 展开更多
关键词 Overcoring stress measurement Uncertainty reduction Partial pooling Bayesian hierarchical model Nuclear waste repository
下载PDF
Spatiotemporal deformation characteristics of Outang landslide and identification of triggering factors using data mining
3
作者 Beibei Yang Zhongqiang Liu +1 位作者 suzanne lacasse Xin Liang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4088-4104,共17页
Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landsli... Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas. 展开更多
关键词 LANDSLIDE Deformation characteristics Triggering factor Data mining Three gorges reservoir
下载PDF
State-of-the-art review of soft computing applications in underground excavations 被引量:46
4
作者 Wengang Zhang Runhong Zhang +4 位作者 Chongzhi Wu Anthony Teck Chee Goh suzanne lacasse Zhongqiang Liu Hanlong Liu 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第4期1095-1106,共12页
Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,comp... Soft computing techniques are becoming even more popular and particularly amenable to model the complex behaviors of most geotechnical engineering systems since they have demonstrated superior predictive capacity,compared to the traditional methods.This paper presents an overview of some soft computing techniques as well as their applications in underground excavations.A case study is adopted to compare the predictive performances of soft computing techniques including eXtreme Gradient Boosting(XGBoost),Multivariate Adaptive Regression Splines(MARS),Artificial Neural Networks(ANN),and Support Vector Machine(SVM) in estimating the maximum lateral wall deflection induced by braced excavation.This study also discusses the merits and the limitations of some soft computing techniques,compared with the conventional approaches available. 展开更多
关键词 Soft computing method(SCM) Underground excavations Wall deformation Predictive capacity
下载PDF
Modelling of shallow landslides with machine learning algorithms 被引量:6
5
作者 Zhongqiang Liu Graham Gilbert +4 位作者 Jose Mauricio Cepeda Asgeir Olaf Kydland Lysdahl Luca Piciullo Heidi Hefre suzanne lacasse 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期385-393,共9页
This paper introduces three machine learning(ML)algorithms,the‘ensemble'Random Forest(RF),the‘ensemble'Gradient Boosted Regression Tree(GBRT)and the Multi Layer Perceptron neural network(MLP)and applies them... This paper introduces three machine learning(ML)algorithms,the‘ensemble'Random Forest(RF),the‘ensemble'Gradient Boosted Regression Tree(GBRT)and the Multi Layer Perceptron neural network(MLP)and applies them to the spatial modelling of shallow landslides near Kvam in Norway.In the development of the ML models,a total of 11 significant landslide controlling factors were selected.The controlling factors relate to the geomorphology,geology,geo-environment and anthropogenic effects:slope angle,aspect,plan curvature,profile curvature,flow accumulation,flow direction,distance to rivers,water content,saturation,rainfall and distance to roads.It is observed that slope angle was the most significant controlling factor in the ML analyses.The performance of the three ML models was evaluated quantitatively based on the Receiver Operating Characteristic(ROC)analysis.The results show that the‘ensemble'GBRT machine learning model yielded the most promising results for the spatial prediction of shallow landslides,with a 95%probability of landslide detection and 87%prediction efficiency. 展开更多
关键词 Shallow landslide Spatial modelling Machine learning GIS
下载PDF
Algorithms for intelligent prediction of landslide displacements 被引量:15
6
作者 Zhong-qiang LIU Dong GUO +3 位作者 suzanne lacasse Jin-hui LI Bei-bei YANG Jung-chan CHOI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第6期412-429,共18页
Landslides represent major threats to life and property in many areas of the world,such as the landslides in the Three Gorges Dam area in China's Mainland.To better prepare for landslides in this area,we explored ... Landslides represent major threats to life and property in many areas of the world,such as the landslides in the Three Gorges Dam area in China's Mainland.To better prepare for landslides in this area,we explored how several machine learning algorithms(long short term memory(LSTM),random forest(RF),and gated recurrent unit(GRU))might predict ground displacements under three types of landslides,each with distinct step-wise displacement characteristics.Landslide displacements are described with trend and periodic analyses and the predictions with each algorithm,validated with observations from the Three Gorges Dam reservoir over a one-year period.Results demonstrated that deep machine learning algorithms can be valuable tools for predicting landslide displacements,with the LSTM and GRU algorithms providing the most encouraging results.We recommend using these algorithms to predict landslide displacement of step-wise type landslides in the Three Gorges Dam area.Predictive models with similar reliability should gradually become a component when implementing early warning systems to reduce landslide risk. 展开更多
关键词 LANDSLIDE DISPLACEMENT Machine learning Three Gorges Dam reservoir
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部