This paper analyzes the anomalous power-law dependence of the ultrasound attenuation on frequency by means of a percolation model. It was suggested that the anomaLous ultrasound attenuation is associated with strongly...This paper analyzes the anomalous power-law dependence of the ultrasound attenuation on frequency by means of a percolation model. It was suggested that the anomaLous ultrasound attenuation is associated with strongly localized eigen modes (to be called fracton) in disordered systems. There exits a steplike increase in the density of vibrational states at crossover frequency ω(co).Computer simulation of vibration spectrum in disordered system is also reported. The density of vibrational states is consistent with the results of relevant experiment outlined above.展开更多
文摘This paper analyzes the anomalous power-law dependence of the ultrasound attenuation on frequency by means of a percolation model. It was suggested that the anomaLous ultrasound attenuation is associated with strongly localized eigen modes (to be called fracton) in disordered systems. There exits a steplike increase in the density of vibrational states at crossover frequency ω(co).Computer simulation of vibration spectrum in disordered system is also reported. The density of vibrational states is consistent with the results of relevant experiment outlined above.