This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal syste...This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.展开更多
We bring new insights into fracture permeability with 7 analogues from the intraplate outcrops of West Iceland (WI), the active South Iceland transform zone (SISZ), the intersection of rift and SISZ near Hengill (Reyk...We bring new insights into fracture permeability with 7 analogues from the intraplate outcrops of West Iceland (WI), the active South Iceland transform zone (SISZ), the intersection of rift and SISZ near Hengill (Reykjafjall-RF), and the Reykjanes oblique rift (RP). WI formed at Tertiary plate boundaries, shifted away, is now cut by the Quaternary intraplate Sn<span style="white-space:nowrap;">æ</span>fellsnes volcanic zone (SVZ), and undergoes occasional earthquakes. By contrast, fractures are being formed and reactivated under intense plate boundary earthquakes in the younger SISZ, RF and RP. Our mapping of stratigraphy, basement fractures, surface ruptures of earthquakes, and leakages of cold and hot water in all areas shows that: 1) In active SISZ, RF and RP, permeable fractures are identical to N-S to NNW dextral, ENE to E-W sinistral, and WNW to NNW sinistral source faults of earthquakes, acting as Riedel shears that accommodate the sinistral motion of the transform zone. The NNE/NE rift-parallel extensional fractures are the least frequent permeable set. Notably, the NW and WNW sets also show dextral motions in RP where they could be splay of each other but belong to a separate developed fracture system, and in the SISZ where the NW set is a splay of a N-S source fault of earthquake. However, permeable fractures in the intraplate WI are only oblique-slip sets striking N-S to NNW dextral, ENE sinistral, and WNW dextral parallel to the SVZ. 2) In each area, the permeable sets fit the fault plane solutions of intraplate or plate boundary earthquakes, as well as the latest stress fields that allow fracture opening for fluid flow. 3) Fractures are more open in the younger SISZ, RF, and RP, with leakages along the fractures and their splays rather than by their tips or in the stepovers. In the older WI where the crust and fractures are filled with secondary minerals, leakages are as much along fractures as where numerous fracture intersections facilitate fluid flow. 4) In case of intersecting fractures, the strike and dip direction of the structures determine which set acts as a carrier or a barrier to the flow. 5) Although Iceland is more known for rifting, these analogues demonstrate that fracture permeability, block compartmentalisation, and fluid flow are controlled by the oblique-slip structures developed under transform mechanism.展开更多
文摘This paper provides an overview of conventional geothermal systems and unconventional geothermal developments as a common reference is needed for discussions between energy professionals. Conventional geothermal systems have the heat, permeability and fluid, requiring only drilling down to °C, normal heat flow or decaying radiogenic granite as heat sources, and used in district heating. Medium-temperature (MT) 100°C - 190°C, and high-temperature (HT) 190°C - 374°C resources are mostly at plate boundaries, with volcanic intrusive heat source, used mostly for electricity generation. Single well capacities are °C - 500°C) and a range of depths (1 m to 20 Km), but lack permeability or fluid, thus requiring stimulations for heat extraction by conduction. HVAC is 1 - 2 m deep and shallow geothermal down to 500 m in wells, both capturing °C, with °C are either advanced by geothermal developers at <7 Km depth (Enhanced Geothermal Systems (EGS), drilling below brittle-ductile transition zones and under geothermal fields), or by the Oil & Gas industry (Advanced Geothermal Systems, heat recovery from hydrocarbon wells or reservoirs, Superhot Rock Geothermal, and millimeter-wave drilling down to 20 Km). Their primary aim is electricity generation, relying on closed-loops, but EGS uses fractures for heat exchange with earthquake risks during fracking. Unconventional approaches could be everywhere, with shallow geothermal already functional. The deeper and hotter unconventional alternatives are still experimental, overcoming costs and technological challenges to become fully commercial. Meanwhile, the conventional geothermal resources remain the most proven opportunities for investments and development.
文摘We bring new insights into fracture permeability with 7 analogues from the intraplate outcrops of West Iceland (WI), the active South Iceland transform zone (SISZ), the intersection of rift and SISZ near Hengill (Reykjafjall-RF), and the Reykjanes oblique rift (RP). WI formed at Tertiary plate boundaries, shifted away, is now cut by the Quaternary intraplate Sn<span style="white-space:nowrap;">æ</span>fellsnes volcanic zone (SVZ), and undergoes occasional earthquakes. By contrast, fractures are being formed and reactivated under intense plate boundary earthquakes in the younger SISZ, RF and RP. Our mapping of stratigraphy, basement fractures, surface ruptures of earthquakes, and leakages of cold and hot water in all areas shows that: 1) In active SISZ, RF and RP, permeable fractures are identical to N-S to NNW dextral, ENE to E-W sinistral, and WNW to NNW sinistral source faults of earthquakes, acting as Riedel shears that accommodate the sinistral motion of the transform zone. The NNE/NE rift-parallel extensional fractures are the least frequent permeable set. Notably, the NW and WNW sets also show dextral motions in RP where they could be splay of each other but belong to a separate developed fracture system, and in the SISZ where the NW set is a splay of a N-S source fault of earthquake. However, permeable fractures in the intraplate WI are only oblique-slip sets striking N-S to NNW dextral, ENE sinistral, and WNW dextral parallel to the SVZ. 2) In each area, the permeable sets fit the fault plane solutions of intraplate or plate boundary earthquakes, as well as the latest stress fields that allow fracture opening for fluid flow. 3) Fractures are more open in the younger SISZ, RF, and RP, with leakages along the fractures and their splays rather than by their tips or in the stepovers. In the older WI where the crust and fractures are filled with secondary minerals, leakages are as much along fractures as where numerous fracture intersections facilitate fluid flow. 4) In case of intersecting fractures, the strike and dip direction of the structures determine which set acts as a carrier or a barrier to the flow. 5) Although Iceland is more known for rifting, these analogues demonstrate that fracture permeability, block compartmentalisation, and fluid flow are controlled by the oblique-slip structures developed under transform mechanism.