This study is about an analytical attempt that explores the two-dimensional concentration distribution of a solute in an open channel flow.The solute undergoes reversible sorption at the channel bed.The method of mult...This study is about an analytical attempt that explores the two-dimensional concentration distribution of a solute in an open channel flow.The solute undergoes reversible sorption at the channel bed.The method of multiple scales is used to find the two-dimensional concentration distribution,which is important for modem day application in industry,environmental risk assessment,etc.Study deduces an analytic expression of two-dimensional concentration distribution for an open channel flow with sorptive channel bed.Effects of retention parameter,Darnkohler number on the solute dispersion are also discussed in this paper.Results reveal that slow or strong kinetics(small value of Darnkohler number)increases solute dispersion.It is also observed.that for slow phase exchange kinetics between bulk flow and small retentive channel bed,solute concentration distribution will uniform faster than their inert counterpart.展开更多
文摘This study is about an analytical attempt that explores the two-dimensional concentration distribution of a solute in an open channel flow.The solute undergoes reversible sorption at the channel bed.The method of multiple scales is used to find the two-dimensional concentration distribution,which is important for modem day application in industry,environmental risk assessment,etc.Study deduces an analytic expression of two-dimensional concentration distribution for an open channel flow with sorptive channel bed.Effects of retention parameter,Darnkohler number on the solute dispersion are also discussed in this paper.Results reveal that slow or strong kinetics(small value of Darnkohler number)increases solute dispersion.It is also observed.that for slow phase exchange kinetics between bulk flow and small retentive channel bed,solute concentration distribution will uniform faster than their inert counterpart.