Aim: To study Expression and Phosphorylation status of Focal Adhesion Kinase (FAK) in Human Breast Cancer tissue. To study the relation of FAK with standard clinicopathological parameters of Human Breast Cancer. Metho...Aim: To study Expression and Phosphorylation status of Focal Adhesion Kinase (FAK) in Human Breast Cancer tissue. To study the relation of FAK with standard clinicopathological parameters of Human Breast Cancer. Methods: Tissue collection, Protein extraction, RNA isolation, Western Blot, Immunohistochemistry, RT-PCR, ELISA, Statistical analysis. Results: All the four techniques showed upregulated expression, phosphorylation (Tyr-397) and processing of FAK in human breast cancer tissue compared to the adjacent non-tumor tissue of the same patient. Upregulation of FAK was found to be increased parallely with the advancement of cancer. Localisation of FAK was found to be membrano-cytoplasmic. FAK is upregulated both in protein and mRNA level. Expression and phosphorylation of FAK is increased specifically in the tumor regions compared to the surrounding non-tumor region. Upregulation of FAK was frequently found in ER-positive and PR-positive but Her2/neunegative breast cancer cases. Conclusion: FAK has crucial role in development and progression of human breast cancer. FAK may be considered as an indicator of human breast cancer progression. FAK processing may be considered as an indicator of invasive potential of breast cancer. FAK may be considered as a clinical indicator of human breast cancer development and progression.展开更多
文摘Aim: To study Expression and Phosphorylation status of Focal Adhesion Kinase (FAK) in Human Breast Cancer tissue. To study the relation of FAK with standard clinicopathological parameters of Human Breast Cancer. Methods: Tissue collection, Protein extraction, RNA isolation, Western Blot, Immunohistochemistry, RT-PCR, ELISA, Statistical analysis. Results: All the four techniques showed upregulated expression, phosphorylation (Tyr-397) and processing of FAK in human breast cancer tissue compared to the adjacent non-tumor tissue of the same patient. Upregulation of FAK was found to be increased parallely with the advancement of cancer. Localisation of FAK was found to be membrano-cytoplasmic. FAK is upregulated both in protein and mRNA level. Expression and phosphorylation of FAK is increased specifically in the tumor regions compared to the surrounding non-tumor region. Upregulation of FAK was frequently found in ER-positive and PR-positive but Her2/neunegative breast cancer cases. Conclusion: FAK has crucial role in development and progression of human breast cancer. FAK may be considered as an indicator of human breast cancer progression. FAK processing may be considered as an indicator of invasive potential of breast cancer. FAK may be considered as a clinical indicator of human breast cancer development and progression.