Emerging as an outperformed class of metal-organic frameworks(MOFs),square-octahedron(soc)topology MOFs(soc-MOFs)feature superior properties of high porosity,large gas storage capacity,and excellent thermal/chemical s...Emerging as an outperformed class of metal-organic frameworks(MOFs),square-octahedron(soc)topology MOFs(soc-MOFs)feature superior properties of high porosity,large gas storage capacity,and excellent thermal/chemical stability.We report here an iron based soc-MOF,denoted as Fe-pbpta(H4pbpta=4,4',4'',4'''-(1,4-phenylenbis(pyridine-4,2-6-triyl))-tetrabenzoic acid)possessing a very high Brunauer,Emmett and Teller(BET)surface area of 4,937 m2/g and a large pore volume of 2.15 cm3/g.The MOF demonstrates by far the highest gravimetric uptake of 369 cm3(STP)/g under the DOE operational storage conditions(35 bar and 298 K)and a high volumetric deliverable capacity of 192 cc/cc at 298 K and 65 bar.Furthermore,Fe-pbpta exhibits high thermal and aqueous stability making it a promising candidate for on-board methane storage.展开更多
基金the U.S.Department of Energy's Office of Energy Efficiency and Renewable Energy under the Hydrogen and Fuel Cell Technologies and Vehicle Technologies Offices under Award Number DE-EE0008812.S.K.acknowledges the financial support from the University Grants Commission(UGC),New Delhi,India(No.F 5-80/2014(IC)).ChemMatCARS Sector 15 is principally supported by the Divisions of Chemistry(CHE)and Materials Research(DMR),National Science Foundation,under Grant Number NSF/CHE-1346572.Use of the Advanced Photon Source,an Office of Science User Facility operated for the U.S.Department of Energy(DOE)Office of Science by Argonne National Laboratory,was supported by the U.S.DOE under Contract No.DE-AC02-06CH11357.G.V.would further like to acknowledge Jason Exley(Sales Engineer,Micromeritics USA)for help and support provided with the measurements and the HKUST reference data.
文摘Emerging as an outperformed class of metal-organic frameworks(MOFs),square-octahedron(soc)topology MOFs(soc-MOFs)feature superior properties of high porosity,large gas storage capacity,and excellent thermal/chemical stability.We report here an iron based soc-MOF,denoted as Fe-pbpta(H4pbpta=4,4',4'',4'''-(1,4-phenylenbis(pyridine-4,2-6-triyl))-tetrabenzoic acid)possessing a very high Brunauer,Emmett and Teller(BET)surface area of 4,937 m2/g and a large pore volume of 2.15 cm3/g.The MOF demonstrates by far the highest gravimetric uptake of 369 cm3(STP)/g under the DOE operational storage conditions(35 bar and 298 K)and a high volumetric deliverable capacity of 192 cc/cc at 298 K and 65 bar.Furthermore,Fe-pbpta exhibits high thermal and aqueous stability making it a promising candidate for on-board methane storage.