期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Structure inversion asymmetry enhanced electronic structure and electrical transport in 2D A3SnO(A=Ca,Sr,and Ba)antiperovskite monolayers
1
作者 syed muhammad alay-e-abbas Ghulam Abbas +3 位作者 Waqas Zulfiqar muhammad Sajjad Nirpendra Singh J.Andreas Larsson 《Nano Research》 SCIE EI CSCD 2023年第1期1779-1791,共13页
Anti-perovskites A3SnO(A=Ca,Sr,and Ba)are an important class of materials due to the emergence of Dirac cones and tiny mass gaps in their band structures originating from an intricate interplay of crystal symmetry,spi... Anti-perovskites A3SnO(A=Ca,Sr,and Ba)are an important class of materials due to the emergence of Dirac cones and tiny mass gaps in their band structures originating from an intricate interplay of crystal symmetry,spin–orbit coupling,and band overlap.This provides an exciting playground for modulating their electronic properties in the two-dimensional(2D)limit.Herein,we employ first-principles density functional theory(DFT)calculations by combining dispersion-corrected SCAN+rVV10 and mBJ functionals for a comprehensive side-by-side comparison of the structural,thermodynamic,dynamical,mechanical,electronic,and thermoelectric properties of bulk and monolayer(one unit cell thick)A3SnO anti-perovskites.Our results show that 2D monolayers derived from bulk A3SnO anti-perovskites are structurally and energetically stable.Moreover,Rashba-type splitting in the electronic structure of Ca3SnO and Sr3SnO monolayers is observed owing to strong spin–orbit coupling and inversion asymmetry.On the other hand,monolayer Ba3SnO exhibits Dirac cone at the high-symmetryΓpoint due to the domination of band overlap.Based on the predicted electronic transport properties,it is shown that inversion asymmetry plays an essential character such that the monolayers Ca3SnO and Sr3SnO outperform thermoelectric performance of their bulk counterparts. 展开更多
关键词 electrical transport anti-perovskites low-dimensional materials electronic structure mechanical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部