Due to their complex structure,2-D models are challenging to work with;additionally,simulation,analysis,design,and control get increasingly difficult as the order of the model grows.Moreover,in particular time interva...Due to their complex structure,2-D models are challenging to work with;additionally,simulation,analysis,design,and control get increasingly difficult as the order of the model grows.Moreover,in particular time intervals,Gawronski and Juang’s time-limited model reduction schemes produce an unstable reduced-order model for the 2-D and 1-D models.Researchers revealed some stability preservation solutions to address this key flaw which ensure the stability of 1-D reduced-order systems;nevertheless,these strategies result in large approximation errors.However,to the best of the authors’knowledge,there is no literature available for the stability preserving time-limited-interval Gramian-based model reduction framework for the 2-D discrete-time systems.In this article,2-D models are decomposed into two separate sub-models(i.e.,two cascaded 1-D models)using the condition of minimal rank-decomposition.Model reduction procedures are conducted on these obtained two 1-D sub-models using limited-time Gramian.The suggested methodology works for both 2-D and 1-D models.Moreover,the suggested methodology gives the stability of the reduced model as well as a priori error-bound expressions for the 2-D and 1-D models.Numerical results and comparisons between existing and suggested methodologies are provided to demonstrate the effectiveness of the suggested methodology.展开更多
文摘Due to their complex structure,2-D models are challenging to work with;additionally,simulation,analysis,design,and control get increasingly difficult as the order of the model grows.Moreover,in particular time intervals,Gawronski and Juang’s time-limited model reduction schemes produce an unstable reduced-order model for the 2-D and 1-D models.Researchers revealed some stability preservation solutions to address this key flaw which ensure the stability of 1-D reduced-order systems;nevertheless,these strategies result in large approximation errors.However,to the best of the authors’knowledge,there is no literature available for the stability preserving time-limited-interval Gramian-based model reduction framework for the 2-D discrete-time systems.In this article,2-D models are decomposed into two separate sub-models(i.e.,two cascaded 1-D models)using the condition of minimal rank-decomposition.Model reduction procedures are conducted on these obtained two 1-D sub-models using limited-time Gramian.The suggested methodology works for both 2-D and 1-D models.Moreover,the suggested methodology gives the stability of the reduced model as well as a priori error-bound expressions for the 2-D and 1-D models.Numerical results and comparisons between existing and suggested methodologies are provided to demonstrate the effectiveness of the suggested methodology.