The transforming growth factor-β(TGF-β)family controls embryogenesis,stem cell differentiation,and tissue homeostasis.However,how post-translation modifications contribute to fine-tuning of TGF-βfamily signaling re...The transforming growth factor-β(TGF-β)family controls embryogenesis,stem cell differentiation,and tissue homeostasis.However,how post-translation modifications contribute to fine-tuning of TGF-βfamily signaling responses is not well understood.Inhibitory(I)-Smads can antagonize TGF-β/Smad signaling by recruiting Smurf E3 ubiquitin ligases to target the active TGF-βreceptor for proteasomal degradation.A proteomic interaction screen identified Vpr binding protein(VprBP)as novel binding partner of Smad7.Mis-expression studies revealed that VprBP negatively controls Smad2 phosphorylation,Smad2–Smad4 interaction,as well as TGF-βtarget gene expression.VprBP was found to promote Smad7–Smurf1–TβRI complex formation and induce proteasomal degradation of TGF-βtype I receptor(TβRI).Moreover,VprBP appears to stabilize Smurf1 by suppressing Smurf1 poly-ubiquitination.In multiple adult and mouse embryonic stem cells,depletion of VprBP promotes TGF-βor Activin-induced responses.In the mouse embryo VprBP expression negatively correlates with mesoderm marker expression,and VprBP attenuated mesoderm induction during zebrafish embryogenesis.Our findings thereby uncover a novel regulatory mechanism by which Smurf1 controls the TGF-βand Activin cascade and identify VprBP as a critical determinant of embryonic mesoderm induction.展开更多
基金This research was supported by Cancer Genomics Centre Netherlands and a grant from the National Natural Science Foundation of China(31471315).
文摘The transforming growth factor-β(TGF-β)family controls embryogenesis,stem cell differentiation,and tissue homeostasis.However,how post-translation modifications contribute to fine-tuning of TGF-βfamily signaling responses is not well understood.Inhibitory(I)-Smads can antagonize TGF-β/Smad signaling by recruiting Smurf E3 ubiquitin ligases to target the active TGF-βreceptor for proteasomal degradation.A proteomic interaction screen identified Vpr binding protein(VprBP)as novel binding partner of Smad7.Mis-expression studies revealed that VprBP negatively controls Smad2 phosphorylation,Smad2–Smad4 interaction,as well as TGF-βtarget gene expression.VprBP was found to promote Smad7–Smurf1–TβRI complex formation and induce proteasomal degradation of TGF-βtype I receptor(TβRI).Moreover,VprBP appears to stabilize Smurf1 by suppressing Smurf1 poly-ubiquitination.In multiple adult and mouse embryonic stem cells,depletion of VprBP promotes TGF-βor Activin-induced responses.In the mouse embryo VprBP expression negatively correlates with mesoderm marker expression,and VprBP attenuated mesoderm induction during zebrafish embryogenesis.Our findings thereby uncover a novel regulatory mechanism by which Smurf1 controls the TGF-βand Activin cascade and identify VprBP as a critical determinant of embryonic mesoderm induction.