期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
STAT1 and STAT2 Null Cells Are Resistant to RNA-Induced Apoptosis Due to Deficiency in Constitutive and Inducible Apoptosis-Regulating Genes
1
作者 Farag Bleiblo Paul Michael +4 位作者 chilakamarti V. Ramana t. c. tai Joseph E. Parrillo Anand Kumar Aseem Kumar 《American Journal of Molecular Biology》 2020年第3期165-187,共23页
Although much progress has been made in identifying the signaling pathways that mediate viral RNA-induced apoptosis and activation of interferon-stimulated genes, the role that bacterial RNA plays in regulating these ... Although much progress has been made in identifying the signaling pathways that mediate viral RNA-induced apoptosis and activation of interferon-stimulated genes, the role that bacterial RNA plays in regulating these responses has remained undetermined. Herein, we identified bacterial RNA as a novel inducer of the apoptotic cell death. Unlike the parental cells, STAT1 and STAT2 mutants display apoptotic defects which were reversed by restoring the expression of wild type proteins. While STAT1 mutants lacking tyrosine-701 or a functional SH2 domain were effective as the wild-type protein in restoring the apoptotic response, the mutant carrying a point mutation at serine-727 of STAT1 was resistant to bacterial RNA-induced apoptosis. We also determined that the lack of apoptosis in the STAT1 and STAT2 mutants was correlated with the constitutive and inducible activation of apoptosis regulating proteins. Furthermore, we show that bacterial RNA induces transcriptional activation of STAT1, STAT2, IRF1, and ISGF3, which was impaired in STAT1 or STAT2 mutants. These observations suggested that the participation of STATs in regulating the apoptotic response is independent of their downstream functions as cytokine-induced transcriptional activators. In addition to bacterial immunity, the results presented here may also have implications in cellular pathophysiology and RNA-based therapy. 展开更多
关键词 STAT1 STAT2 APOPTOSIS Bacterial RNA
下载PDF
Gene Regulation of Catecholamine Biosynthetic Enzymes by Nitric Oxide in PC12 Cells
2
作者 Dominique Ansell Julie Grandbois t. c. tai 《Open Journal of Endocrine and Metabolic Diseases》 2014年第4期77-84,共8页
Nitric oxide (NO) regulates a wide range of physiological processes. Recent studies show that NO can regulate the release of catecholamines (CA) from the adrenal medulla. In the current study, the PC12 cell line was u... Nitric oxide (NO) regulates a wide range of physiological processes. Recent studies show that NO can regulate the release of catecholamines (CA) from the adrenal medulla. In the current study, the PC12 cell line was used to examine the effect of NO on the regulation of the CA biosynthetic enzymes: tyrosine hydroxylase (TH), dopamine-β-hydroxylase (DBH) and phenylethanolamine Nmethyltransferase (PNMT). Treatment of PC12 cells with the NO donor, sodium nitroprusside (SNP) for 6 hours significantly increased TH, DBH and PNMT mRNA levels. In addition, NO potentiates the regulation of gene expression of all three CA biosynthetic enzymes by glucocorticoids and cholinergic agonists. The signaling pathways involved in NO regulation of CA biosynthetic enzymes were investigated with the use of specific kinase activators and inhibitors, with results supporting a contributing role of PKA, PKC and PKG in SNP-mediated induction for all three CA genes (p < 0.01). In addition, inhibitors of transcription and translation inhibited SNP-mediated induction of all three genes (p < 0.001) suggesting that both transcriptional and translational mechanisms may be involved in CA gene regulation by NO. Results from this study show that in addition to regulating CA biosynthetic enzymes, NO can also potentiate cholinergic and glucocorticoid activation of CA genes. 展开更多
关键词 NO PC12 Cells TH DBH PNMT CATECHOLAMINES
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部