Electrical transport properties of double-walled carbon nanotubes (DWNTs) are modulated by encapsulating the azafullerene C59N which is synthesized via a plasma ion-irradiation method. The encapsulation of C59N molecu...Electrical transport properties of double-walled carbon nanotubes (DWNTs) are modulated by encapsulating the azafullerene C59N which is synthesized via a plasma ion-irradiation method. The encapsulation of C59N molecules inside DWNTs has been confirmed by both transmission electron microscopy and Raman spectroscopy. The pristine DWNTs with outer diameter 4 - 5 nm are found to exhibit an ambipolar semiconducting behavior due to their small band gap. It is found that C60 fullerene encapsulated DWNTs exhibit a unipolar p-type semiconducting behavior. By comparison, C59N encapsulated DWNTs display an n-type semiconducting behavior. Our findings demonstrate that C59N operates as an electron donor compared with the acceptor behavior of C60, which is further clarified by photoelectron emission spectroscopy.展开更多
文摘Electrical transport properties of double-walled carbon nanotubes (DWNTs) are modulated by encapsulating the azafullerene C59N which is synthesized via a plasma ion-irradiation method. The encapsulation of C59N molecules inside DWNTs has been confirmed by both transmission electron microscopy and Raman spectroscopy. The pristine DWNTs with outer diameter 4 - 5 nm are found to exhibit an ambipolar semiconducting behavior due to their small band gap. It is found that C60 fullerene encapsulated DWNTs exhibit a unipolar p-type semiconducting behavior. By comparison, C59N encapsulated DWNTs display an n-type semiconducting behavior. Our findings demonstrate that C59N operates as an electron donor compared with the acceptor behavior of C60, which is further clarified by photoelectron emission spectroscopy.