A pressure wave is generated ahead of a high-speed train, while entering a tunnel. This pressure wave propagates to the tunnel exit and spouts as a micro-pressure wave, which causes an exploding sound. From the fact t...A pressure wave is generated ahead of a high-speed train, while entering a tunnel. This pressure wave propagates to the tunnel exit and spouts as a micro-pressure wave, which causes an exploding sound. From the fact that the ballast track tunnel has smaller noise than the slab track tunnel, we have suggested a new inner tunnel model to decrease the noise of the micro-pressure wave, using the ballast effect. Experimental and numerical investigations are carded out to clarify the attenuation and distortion of propagating compression wave over porous plate wall in a model tunnel. Data shows that the strength of the compression wave and a maximum pressure gradient of the compression wave was weakened. These data shows the possibility of the present alleviative method using the porous plate wall in a tunnel.展开更多
This paper describes experimental and numerical works to investigate noise phenomenon in supersonic flow discharged from a convergent-divergent nozzle.The noise phenomenon of flow is generated by an emission of 't...This paper describes experimental and numerical works to investigate noise phenomenon in supersonic flow discharged from a convergent-divergent nozzle.The noise phenomenon of flow is generated by an emission of 'transonic tones'.The results obtained show that the frequency of a transonic tone,that differs from the frequency of a screech tone due to the shock-cell structures in a jet and originates in the shock wave in the nozzle,increases in proportion to the nozzle pressure ratio.The high-order transonic tone has the directivity in the direction of the flow.As for the transonic tone's frequency,the separated zone was calculated by using a simple flow model considering the propagating perturbation.The results of the model corresponded to the results of this experiment well.展开更多
This paper describes an experimental work to investigate the effect of a reflector on supersonic jet noise radiated from a convergent-divergent nozzle with a design Mach number 2.0.In the present study,a metal reflect...This paper describes an experimental work to investigate the effect of a reflector on supersonic jet noise radiated from a convergent-divergent nozzle with a design Mach number 2.0.In the present study,a metal reflector and reflectors made of three different sound-absorbing materials(grass wool and polyurethane foam)were employed,and the reflector size was varied.Acoustic measurement is carried out to obtain the acoustic characteristics such as frequency,amplitude of screech tone and overall sound pressure level(OASPL).A high-quality schlieren optical system is used to visualize the detailed structure of supersonic jet.The results obtained show that the acoustic characteristics of supersonic jet noise are strongly dependent upon the jet pressure ratio and the reflector size.It is also found that the reflector with sound-absorbing material reduces the screech tone amplitude by about 5-13dB and the overall sound pressure levels by about 2-5dB,compared with those of the metal reflector.展开更多
This paper describes computational work to understand the unsteady flow-field of a shock wave discharging from an exit of a duct and impinging upon a flat plate. A flat plate is located downstream, and normal to the a...This paper describes computational work to understand the unsteady flow-field of a shock wave discharging from an exit of a duct and impinging upon a flat plate. A flat plate is located downstream, and normal to the axis of the duct. The distance between the exit of the duct and flat plate is changed. In the present study, two different duct geometries (i.e., square and cross section) are simulated to investigate the effect of duct geometry on the un-steady flows of a shock wave. In computation, the total variation diminishing (TVD) scheme is employed to solve three-dimensional, unsteady, compressible, Euler equations. Computations are performed over the range of shock Mach number from 1.05 to 1.75. Computational results can predict the three-dimensional dynamic behaviour of the shock wave impinging upon the flat plate. The results obtained show that the pressure increase generated on the plate by the shock impingement depends on the duct geometry and the distance between the duct exit and plate, as well as the shock Mach number. It is also found that for the duct with cross-section, the unsteady loads acting on the flat plate are less, compared with the square duct.展开更多
The present computational study addresses the attenuation of the shock wave propagating in a duct, using a porous wall/cavity system. In the present study, a weak shock wave propagating over the porous wall/cavity sys...The present computational study addresses the attenuation of the shock wave propagating in a duct, using a porous wall/cavity system. In the present study, a weak shock wave propagating over the porous wall/cavity system is investigated with computational fluid dynamics. A total variation diminishing scheme is employed to solve the unsteady, two-dimensional, compressible, Navier-Stokes equations. The Mach number of an initial shock wave is changed in the range from 1.02 to 1.12. Several different types of porous wall/cavity systems are tested to investigate the passive control effects. The results show that wall pressure strongly fluctuates due to diffraction and reflection processes of the shock waves behind the incident shock wave. From the results, it is understood that for effective alleviation of tunnel impulse waves, the length of the perforated region should be sufficiently long.展开更多
文摘A pressure wave is generated ahead of a high-speed train, while entering a tunnel. This pressure wave propagates to the tunnel exit and spouts as a micro-pressure wave, which causes an exploding sound. From the fact that the ballast track tunnel has smaller noise than the slab track tunnel, we have suggested a new inner tunnel model to decrease the noise of the micro-pressure wave, using the ballast effect. Experimental and numerical investigations are carded out to clarify the attenuation and distortion of propagating compression wave over porous plate wall in a model tunnel. Data shows that the strength of the compression wave and a maximum pressure gradient of the compression wave was weakened. These data shows the possibility of the present alleviative method using the porous plate wall in a tunnel.
文摘This paper describes experimental and numerical works to investigate noise phenomenon in supersonic flow discharged from a convergent-divergent nozzle.The noise phenomenon of flow is generated by an emission of 'transonic tones'.The results obtained show that the frequency of a transonic tone,that differs from the frequency of a screech tone due to the shock-cell structures in a jet and originates in the shock wave in the nozzle,increases in proportion to the nozzle pressure ratio.The high-order transonic tone has the directivity in the direction of the flow.As for the transonic tone's frequency,the separated zone was calculated by using a simple flow model considering the propagating perturbation.The results of the model corresponded to the results of this experiment well.
文摘This paper describes an experimental work to investigate the effect of a reflector on supersonic jet noise radiated from a convergent-divergent nozzle with a design Mach number 2.0.In the present study,a metal reflector and reflectors made of three different sound-absorbing materials(grass wool and polyurethane foam)were employed,and the reflector size was varied.Acoustic measurement is carried out to obtain the acoustic characteristics such as frequency,amplitude of screech tone and overall sound pressure level(OASPL).A high-quality schlieren optical system is used to visualize the detailed structure of supersonic jet.The results obtained show that the acoustic characteristics of supersonic jet noise are strongly dependent upon the jet pressure ratio and the reflector size.It is also found that the reflector with sound-absorbing material reduces the screech tone amplitude by about 5-13dB and the overall sound pressure levels by about 2-5dB,compared with those of the metal reflector.
文摘This paper describes computational work to understand the unsteady flow-field of a shock wave discharging from an exit of a duct and impinging upon a flat plate. A flat plate is located downstream, and normal to the axis of the duct. The distance between the exit of the duct and flat plate is changed. In the present study, two different duct geometries (i.e., square and cross section) are simulated to investigate the effect of duct geometry on the un-steady flows of a shock wave. In computation, the total variation diminishing (TVD) scheme is employed to solve three-dimensional, unsteady, compressible, Euler equations. Computations are performed over the range of shock Mach number from 1.05 to 1.75. Computational results can predict the three-dimensional dynamic behaviour of the shock wave impinging upon the flat plate. The results obtained show that the pressure increase generated on the plate by the shock impingement depends on the duct geometry and the distance between the duct exit and plate, as well as the shock Mach number. It is also found that for the duct with cross-section, the unsteady loads acting on the flat plate are less, compared with the square duct.
文摘The present computational study addresses the attenuation of the shock wave propagating in a duct, using a porous wall/cavity system. In the present study, a weak shock wave propagating over the porous wall/cavity system is investigated with computational fluid dynamics. A total variation diminishing scheme is employed to solve the unsteady, two-dimensional, compressible, Navier-Stokes equations. The Mach number of an initial shock wave is changed in the range from 1.02 to 1.12. Several different types of porous wall/cavity systems are tested to investigate the passive control effects. The results show that wall pressure strongly fluctuates due to diffraction and reflection processes of the shock waves behind the incident shock wave. From the results, it is understood that for effective alleviation of tunnel impulse waves, the length of the perforated region should be sufficiently long.