期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
紧凑型高临界温度超导电缆的可行性研究 被引量:1
1
作者 t.hara 伍企舜 《电线电缆》 1993年第3期8-13,共6页
日本利用Bean模型的最新研究方法所设计的紧凑型高临界温度超导电缆,由于它能敷设在现有直径为150mm的电缆管道内,从而使得它的输电成本下降到采用常规导体的电缆的输电成本以下。
关键词 超导电缆 中压电缆 可行性 研究
下载PDF
Microstructure of Nitrided Aluminum Alloys Using an Electron-Beam-Excited-Plasma (EBEP)
2
作者 L.Liu A.Yamamoto +3 位作者 T.Hishida H.Shoyama t.hara H.Tsubakino 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第5期349-353,共5页
Nitriding of surface of aluminum alloys was carried out with using an electron-beam-excited-plasma (EBEP) technique. The EBEP is sustained by electron impact ionization with energetic electron beam. Two kinds of subst... Nitriding of surface of aluminum alloys was carried out with using an electron-beam-excited-plasma (EBEP) technique. The EBEP is sustained by electron impact ionization with energetic electron beam. Two kinds of substrates, aluminum alloys AA5052 and AA5083, were exposed to the down flow of EBEP source at 843 K for 45min. The specimens were characterized with respect to following properties: crystallographic structure (XRD), morphology (SEM) and the cross sectional microstructures of the nitrided layer was observed using a scanning electron microscopy (SEM). There are some A12O3 particles on the surface of the nitrided AA5052 and AA5083. The A1N layers were formed on the substrates with the thickness of 4.5 fi m for AA5052 and 0.5 /z m for AA5083 . A relatively uniform nitrided surface layer composed of A1N can be observed on the AA5052 substrate. The grains size near the interfaces between the substrate and A1N layer were smaller than that near the surface. On the surface of A1N layer, the concentration of nitrogen was high and in the middle of A1N layer it had a constant concentration like the aluminum and the concentration was decreased with approaching to the interface. On the surface of nitrided AA5083, a uniform A1N layer was not formed as the reason for the high nitriding temperature. 展开更多
关键词 显微结构 铝合金 渗氮 EBEP
下载PDF
Measurement of the integrated luminosity of the Phase 2 data of the Belle Ⅱ experiment 被引量:2
3
作者 F.Abudinén I.Adachi +419 位作者 P.Ahlburg H.Aihara N.Akopov A.Aloisio F.Ameli L.Andricek N.Anh Ky D.M.Asner H.Atmacan T.Aushev V.Aushev T.Aziz K.Azmi V.Babu S.Baehr S.Bahinipati A.M.Bakich P.Bambade Sw.Banerjee S.Bansal V.Bansal M.Barrett J.Baudot A.Beaulieu J.Becker P.K.Behera J.V.Bennett E.Bernieri F.U.Bernlochner M.Bertemes M.Bessner S.Bettarini V.Bhardwaj F.Bianchi T.Bilka S.Bilokin D.Biswas G.Bonvicini A.Bozek M.Bračko P.Branchini N.Braun T.E.Browder A.Budano S.Bussino M.Campajola L.Cao G.Casarosa C.Cecchi D.Červenkov M.-C.Chang P.Chang R.Cheaib V.Chekelian Y.Q.Chen Y.-T.Chen B.G.Cheon K.Chilikin H.-E.Cho K.Cho S.Cho S.-K.Choi S.Choudhury D.Cinabro L.Corona L.M.Cremaldi S.Cunliffe T.Czank F.Dattola E.De La Cruz-Burelo G.De Nardo M.De Nuccio G.De Pietro R.de Sangro M.Destefanis S.Dey A.De Yta-Hernandez F.Di Capua S.Di Carlo J.Dingfelder Z.Doležal I.Domínguez Jiménez T.V.Dong K.Dort S.Dubey S.Duell S.Eidelman M.Eliachevitch T.Ferber D.Ferlewicz G.Finocchiaro S.Fiore A.Fodor F.Forti A.Frey B.G.Fulsom M.Gabriel E.Ganiev M.Garcia-Hernandez R.Garg A.Garmash V.Gaur A.Gaz U.Gebauer A.Gellrich J.Gemmler T.Geßler R.Giordano A.Giri B.Gobbo R.Godang P.Goldenzweig B.Golob P.Gomis P.Grace W.Gradl E.Graziani D.Greenwald C.Hadjivasiliou S.Halder K.Hara t.hara O.Hartbrich K.Hayasaka H.Hayashii C.Hearty M.T.Hedges I.Heredia de la Cruz M.Hernández Villanueva A.Hershenhorn T.Higuchi E.C.Hill H.Hirata M.Hoek S.Hollitt T.Hotta C.-L.Hsu Y.Hu K.Huang T.Iijima K.Inami G.Inguglia J.Irakkathil Jabbar A.Ishikawa R.Itoh M.Iwasaki Y.Iwasaki S.Iwata P.Jackson W.W.Jacobs D.E.Jaffe E.-J.Jang H.B.Jeon S.Jia Y.Jin C.Joo J.Kahn H.Kakuno A.B.Kaliyar G.Karyan Y.Kato T.Kawasaki H.Kichimi C.Kiesling B.H.Kim C.-H.Kim D.Y.Kim S.-H.Kim Y.K.Kim Y.Kim T.D.Kimmel K.Kinoshita C.Kleinwort B.Knysh P.Kodyš T.Koga I.Komarov T.Konno S.Korpar D.Kotchetkov N.Kovalchuk T.M.G.Kraetzschmar P.Križan R.Kroeger J.F.Krohn P.Krokovny W.Kuehn T.Kuhr M.Kumar R.Kumar K.Kumara S.Kurz A.Kuzmin Y.-J.Kwon S.Lacaprara Y.-T.Lai C.La Licata K.Lalwani L.Lanceri J.S.Lange K.Lautenbach I.-S.Lee S.C.Lee P.Leitl D.Levit P.M.Lewis C.Li L.K.Li S.X.Li Y.M.Li Y.B.Li J.Libby K.Lieret L.Li Gioi J.Lin Z.Liptak Q.Y.Liu D.Liventsev S.Longo A.Loos F.Luetticke T.Luo C.MacQueen Y.Maeda M.Maggiora S.Maity E.Manoni S.Marcello C.Marinas A.Martini M.Masuda K.Matsuoka D.Matvienko J.McNeil J.C.Mei F.Meier M.Merola F.Metzner M.Milesi C.Miller K.Miyabayashi H.Miyata R.Mizuk G.B.Mohanty H.Moon T.Morii H.-G.Moser F.Mueller F.J.Müller Th.Muller R.Mussa K.R.Nakamura E.Nakano M.Nakao H.Nakayama H.Nakazawa M.Nayak G.Nazaryan D.Neverov M.Niiyama N.K.Nisar S.Nishida K.Nishimura M.Nishimura M.H.A.Nouxman B.Oberhof S.Ogawa Y.Onishchuk H.Ono Y.Onuki P.Oskin H.Ozaki P.Pakhlov G.Pakhlova A.Paladino T.Pang E.Paoloni H.Park S.-H.Park B.Paschen A.Passeri S.Patra S.Paul T.K.Pedlar I.Peruzzi R.Peschke R.Pestotnik M.Piccolo L.E.Piilonen P.L.M.Podesta-Lerma V.Popov C.Praz E.Prencipe M.T.Prim M.V.Purohit P.Rados M.Remnev P.K.Resmi I.Ripp-Baudot M.Ritter M.Ritzert G.Rizzo L.B.Rizzuto S.H.Robertson D.Rodríguez Pérez J.M.Roney C.Rosenfeld A.Rostomyan N.Rout G.Russo D.Sahoo Y.Sakai D.A.Sanders S.Sandilya A.Sangal L.Santelj P.Sartori Y.Sato V.Savinov B.Scavino M.Schram H.Schreeck J.Schueler C.Schwanda A.J.Schwartz B.Schwenker R.M.Seddon Y.Seino A.Selce K.Senyo M.E.Sevior C.Sfienti C.P.Shen H.Shibuya J.-G.Shiu A.Sibidanov F.Simon S.Skambraks R.J.Sobie A.Soffer A.Sokolov E.Solovieva S.Spataro B.Spruck M.Starič S.Stefkova Z.S.Stottler R.Stroili J.Strube M.Sumihama T.Sumiyoshi D.J.Summers W.Sutcliffe M.Tabata M.Takizawa U.Tamponi S.Tanaka K.Tanida H.Tanigawa N.Taniguchi Y.Tao P.Taras F.Tenchini E.Torassa K.Trabelsi T.Tsuboyama N.Tsuzuki M.Uchida I.Ueda S.Uehara T.Uglov K.Unger Y.Unno S.Uno P.Urquijo Y.Ushiroda S.E.Vahsen R.van Tonder G.S.Varner K.E.Varvell A.Vinokurova L.Vitale A.Vossen E.Waheed H.M.Wakeling K.Wan W.Wan Abdullah B.Wang M.-Z.Wang X.L.Wang A.Warburton M.Watanabe S.Watanuki J.Webb S.Wehle N.Wermes C.Wessel J.Wiechczynski P.Wieduwilt H.Windel E.Won S.Yamada W.Yan S.B.Yang H.Ye J.Yelton J.H.Yin M.Yonenaga Y.M.Yook C.Z.Yuan Y.Yusa L.Zani J.Z.Zhang Z.Zhang V.Zhilich Q.D.Zhou X.Y.Zhou V.I.Zhukova V.Zhulanov A.Zupanc 《Chinese Physics C》 SCIE CAS CSCD 2020年第2期1-12,共12页
From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ exper... From April to July 2018,a data sample at the peak energy of the T(4 S) resonance was collected with the Belle Ⅱ detector at the SuperKEKB electron-positron collider.This is the first data sample of the Belle Ⅱ experiment.Using Bhabha and digamma events,we measure the integrated luminosity of the data sample to be(496.3±0.3±3.0) pb-1,where the first uncertainty is statistical and the second is systematic.This work provides a basis for future luminosity measurements at Belle Ⅱ. 展开更多
关键词 LUMINOSITY Bhabha digamma Belle II
原文传递
Stabilization of a high-order harmonic generation seeded extreme ultraviolet free electron laser by time-synchronization control with electro-optic sampling 被引量:1
4
作者 H.Tomizawa T.Sato +17 位作者 K.Ogawa K.Togawa T.Tanaka t.hara M.Yabashi H.Tanaka T.Ishikawa T.Togashi S.Matsubara Y.Okayasu T.Watanabe E.J.Takahashi K.Midorikawa M.Aoyama K.Yamakawa S.Owada A.Iwasaki K.Yamanouchi 《High Power Laser Science and Engineering》 SCIE CAS CSCD 2015年第2期1-10,共10页
A fully coherent free electron laser(FEL) seeded with a higher-order harmonic(HH) pulse from high-order harmonic generation(HHG) is successfully operated for a sufficiently prolonged time in pilot user experiments by ... A fully coherent free electron laser(FEL) seeded with a higher-order harmonic(HH) pulse from high-order harmonic generation(HHG) is successfully operated for a sufficiently prolonged time in pilot user experiments by using a timing drift feedback. For HHG-seeded FELs, the seeding laser pulses have to be synchronized with electron bunches. Despite seeded FELs being non-chaotic light sources in principle, external laser-seeded FELs are often unstable in practice because of a timing jitter and a drift between the seeding laser pulses and the accelerated electron bunches. Accordingly,we constructed a relative arrival-timing monitor based on non-invasive electro-optic sampling(EOS). The EOS monitor made uninterrupted shot-to-shot monitoring possible even during the seeded FEL operation. The EOS system was then used for arrival-timing feedback with an adjustability of 100 fs for continual operation of the HHG-seeded FEL. Using the EOS-based beam drift controlling system, the HHG-seeded FEL was operated over half a day with an effective hit rate of 20%–30%. The output pulse energy was 20 μJ at the 61.2 nm wavelength. Towards seeded FELs in the water window region, we investigated our upgrade plan to seed high-power FELs with HH photon energy of 30–100 e V and lase at shorter wavelengths of up to 2 nm through high-gain harmonic generation(HGHG) at the energy-upgraded SPring-8Compact SASE Source(SCSS) accelerator. We studied a benefit as well as the feasibility of the next HHG-seeded FEL machine with single-stage HGHG with tunability of a lasing wavelength. 展开更多
关键词 arrival-timing MONITOR ELECTRO-OPTIC sampling(EOS)
原文传递
Small-diameter vertical shafts constructed in the shallow space of steep mountainous areas
5
作者 t.hara A.Yashima +3 位作者 K.Sawada K.Kariya H.Tsuji N.Soga 《Underground Space》 SCIE EI 2019年第3期235-250,共16页
Japan is a mountainous country comprising several islands,in which mountains occupy 70%of the entire land.Therefore,numerous transmission line towers have been constructed in the shallow space of steep mountainous are... Japan is a mountainous country comprising several islands,in which mountains occupy 70%of the entire land.Therefore,numerous transmission line towers have been constructed in the shallow space of steep mountainous areas.In such construction,monorails and/or cableways are generally used to transport materials and equipment to the construction site instead of using a construction road,as the former method is more economically viable.However,with this method,drill rigs or vertical shaft sinking machines cannot be transported to the site.Four small-diameter vertical shafts of 2.5 or 3.0 m as the foundation for high-voltage transmission line towers in mountainous areas are traditionally constructed manually in Japan.Over the past two decades,however,dangerous and poor environmental conditions for workers regarding the manual construction of these small-diameter vertical shafts have become a major problem.Meanwhile,owing to the poor environmental conditions of small-diameter vertical shafts to be constructed in the shallow space of steep mountainous areas,a decrease has occurred in the number of young workers entering these projects.Namely,the construction of transmission line towers with using the manually traditional small-diameter vertical shafts is becoming difficult in Japan from abovementioned problems.Hence development of a new technology to solve the problems is necessary for Japan’s economic growth.With this knowledge,the authors have developed a new small-diameter vertical shaft construction system,in which workers do not have to enter the vertical shaft during construction,as machines are used instead.The applicability of the proposed system was confirmed by means of the construction of three actual vertical shafts at two construction sites,as well as in factory and field tests.The applicability and details of the final proposed system are summarized in this paper. 展开更多
关键词 Small-diameter vertical shaft Shallow space Steep mountainous area
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部