Taguchi methods have proved to be successful over the last two decades for improvement of product quality and process performance. This study is carried out to simultaneously optimize the tribological properties: wear...Taguchi methods have proved to be successful over the last two decades for improvement of product quality and process performance. This study is carried out to simultaneously optimize the tribological properties: wear rate and frictional force of aluminum metal matrix composite. Al-Cu-Mg alloy reinforced with 6 Wt % of titanium dioxide was prepared using stir casting method. Dry sliding wear test was conducted to understand the tribological behavior of samples. The experiments were conducted as per the Taguchi design of experiment. The wear parameters chosen for the experiment were: sliding speed and load and sliding distance. Each parameter was assigned three levels. The experiment consists of 27 tests according to L27 orthogonal array. Signal to noise ratio analysis has been carried out to determine optimal parametric condition, which yields minimum wear rate and frictional force. Harrington’s desirability functional method is adopted for multifunctional optimization of tribological parameters and the confirmation experiments were conducted to verify the predicted model.展开更多
In recent decades, aluminium alloy based metal matrix composites are used in several applications. Al6061 has been used as matrix material due to its good formability, excellent mechanical properties and etc., wide sp...In recent decades, aluminium alloy based metal matrix composites are used in several applications. Al6061 has been used as matrix material due to its good formability, excellent mechanical properties and etc., wide spectrum of the applications in industrial sectors. Inclusion of Frit particulates as reinforcement in Al6061 alloy material system improves its hardness and decrease in density. In the present investigation Al6061-Frit particulate composites were produced by ‘VORTEX’ method with varying weight percentages of Frit particulate from 0 wt% to 10 wt% in steps of 2.The as cast matrix alloy and its composites have been subjected to solutionizing treatment at a temperature of 530℃ for 2 hours followed by quenching in different media such as air, water and ice. The quenched specimens were subjected to artificial ageing. Aged specimens were subjected to ultra-sonic test using ultra-sonic flaw detector testing apparatus to identify the common casting defects like porosity, blow holes. Macrostructure and microstructure studies were conducted on as cast and composites in order to investigate the distribution of frit particles retained in matrix material system. Micro structural studies were carried out to understand nature of structure. Density measurement was carried out on both Al6061matrix alloy and Al6061-Frit particulate composite. Hardness tests have been conducted both on Al6061 matrix alloy and Al6061-Frit particulate composite before and after heat treatment. It has been observed under identical heat treatment conditions adopted, Al6061-Frit particulate composites exhibited significant improvement in hardness when compared with Al6061 alloy.展开更多
文摘Taguchi methods have proved to be successful over the last two decades for improvement of product quality and process performance. This study is carried out to simultaneously optimize the tribological properties: wear rate and frictional force of aluminum metal matrix composite. Al-Cu-Mg alloy reinforced with 6 Wt % of titanium dioxide was prepared using stir casting method. Dry sliding wear test was conducted to understand the tribological behavior of samples. The experiments were conducted as per the Taguchi design of experiment. The wear parameters chosen for the experiment were: sliding speed and load and sliding distance. Each parameter was assigned three levels. The experiment consists of 27 tests according to L27 orthogonal array. Signal to noise ratio analysis has been carried out to determine optimal parametric condition, which yields minimum wear rate and frictional force. Harrington’s desirability functional method is adopted for multifunctional optimization of tribological parameters and the confirmation experiments were conducted to verify the predicted model.
文摘In recent decades, aluminium alloy based metal matrix composites are used in several applications. Al6061 has been used as matrix material due to its good formability, excellent mechanical properties and etc., wide spectrum of the applications in industrial sectors. Inclusion of Frit particulates as reinforcement in Al6061 alloy material system improves its hardness and decrease in density. In the present investigation Al6061-Frit particulate composites were produced by ‘VORTEX’ method with varying weight percentages of Frit particulate from 0 wt% to 10 wt% in steps of 2.The as cast matrix alloy and its composites have been subjected to solutionizing treatment at a temperature of 530℃ for 2 hours followed by quenching in different media such as air, water and ice. The quenched specimens were subjected to artificial ageing. Aged specimens were subjected to ultra-sonic test using ultra-sonic flaw detector testing apparatus to identify the common casting defects like porosity, blow holes. Macrostructure and microstructure studies were conducted on as cast and composites in order to investigate the distribution of frit particles retained in matrix material system. Micro structural studies were carried out to understand nature of structure. Density measurement was carried out on both Al6061matrix alloy and Al6061-Frit particulate composite. Hardness tests have been conducted both on Al6061 matrix alloy and Al6061-Frit particulate composite before and after heat treatment. It has been observed under identical heat treatment conditions adopted, Al6061-Frit particulate composites exhibited significant improvement in hardness when compared with Al6061 alloy.