期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamics of bioconvection flow of micropolar nanoparticles with Cattaneo-Christov expressions 被引量:1
1
作者 S.A.SHEHZAD t.mushtaq +3 位作者 Z.ABBAS A.RAUF S.U.KHAN I.TLILI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第9期1333-1344,共12页
A numerical analysis is performed to analyze the bioconvective double diffusive micropolar non-Newtonian nanofluid flow caused by stationary porous disks.The consequences of the current flow problem are further extend... A numerical analysis is performed to analyze the bioconvective double diffusive micropolar non-Newtonian nanofluid flow caused by stationary porous disks.The consequences of the current flow problem are further extended by incorporating the Brownian and thermophoresis aspects.The energy and mass species equations are developed by utilizing the Cattaneo and Christov model of heat-mass fluxes.The flow equations are converted into an ordinary differential model by employing the appropriate variables.The numerical solution is reported by using the MATLAB builtin bvp4c method.The consequences of engineering parameters on the flow velocity,the concentration,the microorganisms,and the temperature profiles are evaluated graphically.The numerical data for fascinating physical quantities,namely,the motile density number,the local Sherwood number,and the local Nusselt number,are calculated and executed against various parametric values.The microrotation magnitude reduces for increasing magnetic parameters.The intensity of the applied magnetic field may be utilized to reduce the angular rotation which occurs in the lubrication processes,especially in the suspension of flows.On the account of industrial applications,the constituted output can be useful to enhance the energy transport efficacy and microbial fuel cells. 展开更多
关键词 bioconvection flow micropolar fluid NANOPARTICLE Cattaneo-Christov theory porous disk
下载PDF
Numerical and statistical approach for Casson-Maxwell nanofluid flow with Cattaneo-Christov theory
2
作者 t.mushtaq A.RAUF +3 位作者 S.A.SHEHZAD F.MUSTAFA M.HANIF Z.ABBAS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2021年第7期1063-1076,共14页
The rheological features of an incompressible axi-symmetric Casson-Maxwell nanofluid flow between two stationary disks are examined.The lower permeable disk is located at z=-a,while the upper disk is placed at z=a.Bot... The rheological features of an incompressible axi-symmetric Casson-Maxwell nanofluid flow between two stationary disks are examined.The lower permeable disk is located at z=-a,while the upper disk is placed at z=a.Both the disks are porous and subjected to uniform injection.The fluid properties such as thermal conductivity vary with temperature.The Cattaneo-Christov thermal expression is implemented along with the Buongiorno nanofluid theory.By operating the similarity functions,the reduced form of the fluid model in terms of ordinary differential equations is obtained and solved by the bvp4 c numerical technique.The physical quantities are demonstrated graphically on the velocity and temperature fields.Three-dimensional flow arrangements and twodimensional contour patterns against several dimensionless variables are also sketched.The numerical values of the local Nusselt and Sherwood numbers for various quantities are presented in tabular set-up.The intensity of the linear relationship between the Nusselt and Sherwood numbers is assessed through Pearson’s product-moment correlation technique.The statistical implication of the linear association between variables is also examined by the t-test statistic approach. 展开更多
关键词 Casson-Maxwell fluid porous disk Buongiorno theory variable thermal conductivity Cattaneo-Christov model uniform injection
下载PDF
Thermally Radiative Viscous Fluid Flow Over Curved Moving Surface in Darcy-Forchheimer Porous Space 被引量:1
3
作者 A.Rauf Z.Abbas +1 位作者 S.A.Shehzad t.mushtaq 《Communications in Theoretical Physics》 SCIE CAS CSCD 2019年第3期259-266,共8页
A numerical analysis is developed for incompressible hydromagnetic viscous fluid passed through a curved stretching surface. Fluid saturated by porous space is bounded by curved surface. Term of porous medium is chara... A numerical analysis is developed for incompressible hydromagnetic viscous fluid passed through a curved stretching surface. Fluid saturated by porous space is bounded by curved surface. Term of porous medium is characterized by implementation of Darcy-Forchheimer theory. Adequate similarity variables are implemented to develop a system of non-linear ordinary differential system of equations, which govern the flow behavior. The impact of radiation constraint and Eckert number is incorporated in the energy equation. Numerical scheme based on RKF45 technique is implemented to solve the derived flow model. Prescribed heat flux(PHF) and prescribed surface temperature(PST) boundary conditions are utilized on temperature with Prescribed Surface Concentration(PSC) and Prescribed Mass Flux(PMF)on concentration. Flow behavior is discussed for both the slip and no-slip conditions. Dimensionless physical quantities are presented through graphs and tables. 展开更多
关键词 VISCOUS fluid POROUS medium curved STRETCHING sheet radiation Joule heating
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部