This paper summarizes recent achievements in the characterization ofcandidate vanadium alloys obtained for fusion in the framework of the Japan-China Core UniversityProgram. National Institute for Fusion Science (NIFS...This paper summarizes recent achievements in the characterization ofcandidate vanadium alloys obtained for fusion in the framework of the Japan-China Core UniversityProgram. National Institute for Fusion Science (NIFS) has a program of fabricating high-purityV-4Cr-4Ti alloys. The resulting products (NIFS-HEAT-1,2), were characterized by various researchgroups in the world including Chinese partners. South Western Institute of Physics (SWIP) fabricateda new V-4Cr-4Ti alloy (SWIP-Heat), and carried out a comparative evaluation of hydrogenembrittlement of NIFS-HEATs and SWIP-Heat. The tensile test of hydrogen-doped alloys showed that theNIFS-HEAT maintained the ductility to relatively high hydrogen levels. The comparison of the datawith those of previous studies suggested that the reduced oxygen level in the NIFS-HEATs should beresponsible for the increased resistance to hydrogen embrittlement. Based on the chemical analysisdata of NIFS-HEATs and SWIP-Heats, neutron-induced activation was analyzed in Institute of PlasmaPhysics (IPP-CAS) as a function of cooling time after the use in the fusion first wall. The resultsshowed that the low level of Co dominates the activity up to 50 years followed by a domination of Nbor Nb and Al in the respective alloys. It was suggested that reduction of Co and Nb, both of whichare thought to have been introduced via cross-contamination into the alloys from the molds usedshould be crucial for reducing further the activation.展开更多
基金The project supported by The Core-University Program on Plasma and Nuclear Fusion sponsored by JSPS(Japan)and CAS (China)
文摘This paper summarizes recent achievements in the characterization ofcandidate vanadium alloys obtained for fusion in the framework of the Japan-China Core UniversityProgram. National Institute for Fusion Science (NIFS) has a program of fabricating high-purityV-4Cr-4Ti alloys. The resulting products (NIFS-HEAT-1,2), were characterized by various researchgroups in the world including Chinese partners. South Western Institute of Physics (SWIP) fabricateda new V-4Cr-4Ti alloy (SWIP-Heat), and carried out a comparative evaluation of hydrogenembrittlement of NIFS-HEATs and SWIP-Heat. The tensile test of hydrogen-doped alloys showed that theNIFS-HEAT maintained the ductility to relatively high hydrogen levels. The comparison of the datawith those of previous studies suggested that the reduced oxygen level in the NIFS-HEATs should beresponsible for the increased resistance to hydrogen embrittlement. Based on the chemical analysisdata of NIFS-HEATs and SWIP-Heats, neutron-induced activation was analyzed in Institute of PlasmaPhysics (IPP-CAS) as a function of cooling time after the use in the fusion first wall. The resultsshowed that the low level of Co dominates the activity up to 50 years followed by a domination of Nbor Nb and Al in the respective alloys. It was suggested that reduction of Co and Nb, both of whichare thought to have been introduced via cross-contamination into the alloys from the molds usedshould be crucial for reducing further the activation.