By employing a quasi in situ method, we investigated the dynamic evolution of the grain structure con-sidering the material flow, strain, and strain rate in the friction stir welding of pure copper. The tool' stop...By employing a quasi in situ method, we investigated the dynamic evolution of the grain structure con-sidering the material flow, strain, and strain rate in the friction stir welding of pure copper. The tool' stop action' and rapid cooling were employed and a brass foil was used as a marker to show the material flow path. The grain structure along the material flow path was characterised using electron backscatter diffraction. Static recrystallization occurs for the work-hardened base material in the preheating stage in front of the tool In the acceleration flow stage, grains are significantly refined by plastic deforma-tion, discontinuous dynamic recrystallization, annealing twinning during the strain-induced boundary migration and slight continuous dynamic recrystallization. In the deceleration flow stage, due to a strain reversal, the grain first coarsens, and is thereafter refined again. Finally, the hot-deformed material in the shoulder-affected zone is ‘frozen’ directly whereas that in the probe-affected zone undergoes signif-icant annealing;thus, the recrystallized microstructure and 45°-rotated cube texture are obtained in the probe-affected zone.展开更多
基金partly supported by the New Energy and Industrial Technology Development Organization (NEDO) under the “Innovation Structural Materials Project (Future Pioneering Projects)”a Grant-in-Aid for Science Research from the Japan Society for the Promotion of Science
文摘By employing a quasi in situ method, we investigated the dynamic evolution of the grain structure con-sidering the material flow, strain, and strain rate in the friction stir welding of pure copper. The tool' stop action' and rapid cooling were employed and a brass foil was used as a marker to show the material flow path. The grain structure along the material flow path was characterised using electron backscatter diffraction. Static recrystallization occurs for the work-hardened base material in the preheating stage in front of the tool In the acceleration flow stage, grains are significantly refined by plastic deforma-tion, discontinuous dynamic recrystallization, annealing twinning during the strain-induced boundary migration and slight continuous dynamic recrystallization. In the deceleration flow stage, due to a strain reversal, the grain first coarsens, and is thereafter refined again. Finally, the hot-deformed material in the shoulder-affected zone is ‘frozen’ directly whereas that in the probe-affected zone undergoes signif-icant annealing;thus, the recrystallized microstructure and 45°-rotated cube texture are obtained in the probe-affected zone.