In the present investigation, composites with silicon carbide particle (SiCp) as reinforcement and AZ91 magnesium alloy as matrix have been synthesized using liquid metal stir-casting technique with optimized proces...In the present investigation, composites with silicon carbide particle (SiCp) as reinforcement and AZ91 magnesium alloy as matrix have been synthesized using liquid metal stir-casting technique with optimized processing conditions. The composites with good particle distribution in the matrix, and better grain refinement and good interfacial bonding between the matrix and reinforcement have been obtained. The effect of SiCp content on the physical, mechanical, and tribological properties of Mg-based metal matrix composite (MMC) is studied with respect to particle distribution, grain refinement, and particle/matrix interfacial reactions. The electrical conductivity, coefficient of thermal expansion, microas well as macro-hardness, tensile and compressive properties, and the fracture behavior of the composites along with dry sliding wear of the composites have been evaluated and compared with the base alloy.展开更多
Functionally gradient/graded materials (FGMs), an emerging new class of materials, are the outcome of the recent innovative concepts in materials technology. FGMs are in their early stages of evolution and expected ...Functionally gradient/graded materials (FGMs), an emerging new class of materials, are the outcome of the recent innovative concepts in materials technology. FGMs are in their early stages of evolution and expected to have a strong impact on the design and development of new components and structures with better performance. FGMs exhibit gradual transitions in the microstructure and/or the composition in a specific direction, the presence of which leads to variation in the functional performance within a part. The presence of gradual transitions in material composition in FGMs can reduce or eliminate the deleterious stress concentrations and result in a wide gradation of physical and/or chemical properties within the material. Functionally graded metal-ceramic composites are also getting the attention of the researchers. Among the fabrication routes for FGMs such as chemical vapour deposition, physical vapour deposition, the sol-gel technique, plasma spraying, molten metal infiltration, self propagating high temperature synthesis, spray forming, centrifugal casting, etc., the ones based on solidification route are preferred for FGMs because of their economics and capability to make large size products. The present paper discusses and compares various solidification processing tech- niques available for the fabrication of functionally gradient metals and metal-ceramic composites and lists their properties and possible applications. The other processing methods are briefly described.展开更多
Self-lubrication is one of the smart material properties required for producing components with enhanced wear resistance and low coefficient of friction.Bidirectional(BD)satin weave polyacrylonitrile(PAN)based carbon ...Self-lubrication is one of the smart material properties required for producing components with enhanced wear resistance and low coefficient of friction.Bidirectional(BD)satin weave polyacrylonitrile(PAN)based carbon fiber(Cf)fabric preform was successfully infiltrated with Al 6061 alloy by squeeze infiltration process.The infiltrated composite shows uniform distribution of carbon fibers in the matrix with the elimination of porosities,fiber damage and close control on the formation of deleterious aluminum carbide(Al4C3)phase.Cf/Al composite exhibits remarkable wear resistance compared to unreinforced alloy due to the formation of self-lubricating tribolayer on the pin surface,which intercepts the contact of matrix metal to counter surface.The BD carbon fiber enhanced the hardness and compressive strength of the composite by restraining the plastic flow behavior of matrix.High resolution transmission electron microscopy shows the presence of Al2O3 and MgAl2O4 spinel,confirmed by EDS and SAD pattern,at the composite interface.The composite shows a lower density of 2.16 g/cm^3 which is a major ad vantage for weight reduction compared to the monolithic alloy(2.7 g/cm^3).展开更多
文摘In the present investigation, composites with silicon carbide particle (SiCp) as reinforcement and AZ91 magnesium alloy as matrix have been synthesized using liquid metal stir-casting technique with optimized processing conditions. The composites with good particle distribution in the matrix, and better grain refinement and good interfacial bonding between the matrix and reinforcement have been obtained. The effect of SiCp content on the physical, mechanical, and tribological properties of Mg-based metal matrix composite (MMC) is studied with respect to particle distribution, grain refinement, and particle/matrix interfacial reactions. The electrical conductivity, coefficient of thermal expansion, microas well as macro-hardness, tensile and compressive properties, and the fracture behavior of the composites along with dry sliding wear of the composites have been evaluated and compared with the base alloy.
文摘Functionally gradient/graded materials (FGMs), an emerging new class of materials, are the outcome of the recent innovative concepts in materials technology. FGMs are in their early stages of evolution and expected to have a strong impact on the design and development of new components and structures with better performance. FGMs exhibit gradual transitions in the microstructure and/or the composition in a specific direction, the presence of which leads to variation in the functional performance within a part. The presence of gradual transitions in material composition in FGMs can reduce or eliminate the deleterious stress concentrations and result in a wide gradation of physical and/or chemical properties within the material. Functionally graded metal-ceramic composites are also getting the attention of the researchers. Among the fabrication routes for FGMs such as chemical vapour deposition, physical vapour deposition, the sol-gel technique, plasma spraying, molten metal infiltration, self propagating high temperature synthesis, spray forming, centrifugal casting, etc., the ones based on solidification route are preferred for FGMs because of their economics and capability to make large size products. The present paper discusses and compares various solidification processing tech- niques available for the fabrication of functionally gradient metals and metal-ceramic composites and lists their properties and possible applications. The other processing methods are briefly described.
文摘Self-lubrication is one of the smart material properties required for producing components with enhanced wear resistance and low coefficient of friction.Bidirectional(BD)satin weave polyacrylonitrile(PAN)based carbon fiber(Cf)fabric preform was successfully infiltrated with Al 6061 alloy by squeeze infiltration process.The infiltrated composite shows uniform distribution of carbon fibers in the matrix with the elimination of porosities,fiber damage and close control on the formation of deleterious aluminum carbide(Al4C3)phase.Cf/Al composite exhibits remarkable wear resistance compared to unreinforced alloy due to the formation of self-lubricating tribolayer on the pin surface,which intercepts the contact of matrix metal to counter surface.The BD carbon fiber enhanced the hardness and compressive strength of the composite by restraining the plastic flow behavior of matrix.High resolution transmission electron microscopy shows the presence of Al2O3 and MgAl2O4 spinel,confirmed by EDS and SAD pattern,at the composite interface.The composite shows a lower density of 2.16 g/cm^3 which is a major ad vantage for weight reduction compared to the monolithic alloy(2.7 g/cm^3).