期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Insulator-to-metal transition in RCoO_(3)(R=Pr,Nd)
1
作者 Sujoy Saha Sadhan Chanda +1 位作者 Alo Dutta t.p.sinha 《Journal of Advanced Dielectrics》 2023年第3期20-26,共7页
We report a straightforward tool to investigate insulator-metal transition in RCoO_(3)(R=Pr,and Nd)nanoparticles prepared by a sol-gel technique.Thermogravimetric analysis(TGA)of the as-prepared gel is performed to ge... We report a straightforward tool to investigate insulator-metal transition in RCoO_(3)(R=Pr,and Nd)nanoparticles prepared by a sol-gel technique.Thermogravimetric analysis(TGA)of the as-prepared gel is performed to get the lowest possible calcination temperature of RCoO_(3)nanoparticles.The Rietveld refinement of the powder X-ray diffraction(XRD)patterns for both samples shows that the samples crystallize in the orthorhombic(Pnma)phase at room temperature.The particle size of the sample is determined by scanning electron microscopy.Ac conductivity of the materials is analyzed in the temperature range from 303 K to 673 K and in the frequency range from 42 Hz to 1.1 MHz.The insulator-to-metal transition of PrCoO_(3)and NdCoO_(3)is analyzed by ac impedance spectroscopy.DC resistivity measurement is also done to cross check the insulator-metal transition in RCoO_(3)system. 展开更多
关键词 Sol-gel technique XRD metal-insulator transition transport property
原文传递
Structural and electrical transport properties of a rare earth double perovskite oxide:Ba_2ErNbO_6
2
作者 Rajesh Mukherjee Binita Ghosh +2 位作者 Sujoy Saha Chandrahas Bharti t.p.sinha 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第4期334-342,共9页
The double perovskite oxide barium erbium niobate, Ba2ErNbO6 (BEN) was synthesized by solid state reaction technique. Rietveld refinement of the X-ray diffraction pattern of the sample showed cubic (Fm3m) phase at... The double perovskite oxide barium erbium niobate, Ba2ErNbO6 (BEN) was synthesized by solid state reaction technique. Rietveld refinement of the X-ray diffraction pattern of the sample showed cubic (Fm3m) phase at room temperature. Fourier trans-form infrared spectrum showed two primary phonon modes of the sample at around 387 and 600 cm-1. Raman spectrum of the sam-ple taken at 488 nm excitation wavelength showed four primary strong peaks at 106, 382, 747 and 814 cm-1. Lorentzian lines with 10 bands were used to fit the Raman spectrum. A group theoretical study was performed to assign all the Raman modes. Impedance spectroscopy was applied to investigate the ac electrical conductivity of BEN in a temperature range from 303 to 673 K and in a fre-quency range from 100 Hz-1 MHz. The dielectric relaxation mechanism was discussed in the frame work of permittivity, conduc-tivity, modulus and impedance formalisms. The complex plane plot of the impedance data was modeled by an equivalent circuit con-sisting of two serially connected R-CPE units, (one for the grain and the other for the grain boundary), each containing a resistor (R) and a constant phase element (CPE). The R-CPE units were used to incorporate the non-ideal character of the polarization phenome-non instead of an ideal capacitive behaviour. The relaxation time corresponding to dielectric loss was found to obey the Arrhenius law with activation energy of 0.85 eV. The frequency dependent conductivity spectra followed the Jonscher power law. The Cole-Cole model was used to investigate the dielectric relaxation mechanism in the sample. 展开更多
关键词 perovskites Rietveld refinement Raman spectroscopy impedance spectroscopy rare earths
原文传递
MORPHOTROPIC PHASE BOUNDARY AND DIELECTRIC RELAXATION STUDY OF(Bi_(0.5)Na_(0.5))TiO_(3)-BaTiO_(3)LEAD-FREE CERAMIC
3
作者 B.PARIJA S.PANIGRAHI +1 位作者 T.BADAPANDA t.p.sinha 《Journal of Advanced Dielectrics》 CAS 2012年第3期34-46,共13页
We report the temperature and frequency dependence impedance spectroscopy of(1-x)(Bi_(0.5)Na_(0.5))TiO_(3-x)BaTiO_(3)(abbreviated as BNT-BT)ceramics with 0≤x≤0.07 prepared by conventional solid-state route.X-ray dif... We report the temperature and frequency dependence impedance spectroscopy of(1-x)(Bi_(0.5)Na_(0.5))TiO_(3-x)BaTiO_(3)(abbreviated as BNT-BT)ceramics with 0≤x≤0.07 prepared by conventional solid-state route.X-ray diffraction analysis indicated that a solid solution is formed when BaTiO_(3)diffuses into the(Bi_(0.5)Na_(0.5))TiO_(3)lattice and a morphotropic phase boundary between rhombohedral and tetragonal locates at x=0.07.The microstructure indicated that the grain size reduces and the shape changes from rectangular to quasi-spherical with increase in BaTiO_(3)content.Complex Impedance Spectroscopy analysis suggested the presence of temperature-dependent relaxation process in the materials.The modulus mechanism indicated the nonDebye type of conductivity relaxation in the materials,which is supported by impedance data.The activation energies have been calculated from impedance,electric modulus studies and dc conductivity which suggests that the conductions are ionic in nature.The activation energy increases with increase of BT content up to x=0.05 and decreases at x=0.07 which also indicates the presence of morphotropic phase boundary at x=0.07. 展开更多
关键词 Morphtropic phase boundary(MPB) impedance spectroscopy electrical modulus RELAXATIONS CONDUCTIVITY
原文传递
Octahedral distortion-driven electrical and vibrational properties of A_(2)ErTaO_(6)(A=Sr and Ca)double perovskite oxides
4
作者 Rajesh Mukherjee Alo Dutta t.p.sinha 《Journal of Advanced Dielectrics》 CAS 2018年第4期20-27,共8页
Rietveld refinement analysis indicates that A_(2)ErTaO_(6)(A=Sr^(+2),Ca^(+2)ceramics prepared by a solid-state route are crystallized in monoclinic perovskite phase with space group P21=n.Raman scattering and infrared... Rietveld refinement analysis indicates that A_(2)ErTaO_(6)(A=Sr^(+2),Ca^(+2)ceramics prepared by a solid-state route are crystallized in monoclinic perovskite phase with space group P21=n.Raman scattering and infrared spectroscopy are used to investigate the structure and phonon modes of the samples.Using Lorentzian lines,we have fitted the Raman spectra and the major Raman modes are assigned.Phonon vibrational frequency is modulated with the A-site cationic change.Impedance spectra of the samples over the frequency range of 100 Hz–1.1 MHz are investigated at different temperatures from 303 K to 573 K.Cole–Cole relaxation of dielectric constant is modified with the electrical conduction parameter to describe the temperature dependence of dielectric constant.The frequency-dependent conductivity spectra follow the double power-law. 展开更多
关键词 Rare-earth double perovskite dielectric relaxation Raman spectroscopy electrical conductivity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部