In the present study, the free vibration of laminated functionally graded carbon nanotube reinforced composite beams is analyzed. The laminated beam is made of perfectly bonded carbon nanotubes reinforced composite (C...In the present study, the free vibration of laminated functionally graded carbon nanotube reinforced composite beams is analyzed. The laminated beam is made of perfectly bonded carbon nanotubes reinforced composite (CNTRC) layers. In each layer, single-walled carbon nanotubes are assumed to be unifonnly distributed (UD) or functionally graded (FG) distributed along the thickness direction. Effective material properties of the two-phase composites, a mixture of carbon nanotubes (CNTs) and an isotropic polymer, are calculated using the extended nile of mixture. The first-order shear deformation theory is used to formulate a governing equation for predicting free vibration of laminated functionally graded carbon nanotubes reinforced composite (FG?CNTRC) beams. The governing equation is solved by the finite element method with various boundary conditions. Several numerical tests are perfbnned to investigate the influence of the CNTs volume fractions, CNTs distributions, CNTs orientation angles, boundary conditions, length-to-thickness ratios and the numbers of layers on the frequencies of the laminated FG-CNTRC beams. Moreover, a laminated composite beam combined by various distribution types of CNTs is also studied.展开更多
文摘In the present study, the free vibration of laminated functionally graded carbon nanotube reinforced composite beams is analyzed. The laminated beam is made of perfectly bonded carbon nanotubes reinforced composite (CNTRC) layers. In each layer, single-walled carbon nanotubes are assumed to be unifonnly distributed (UD) or functionally graded (FG) distributed along the thickness direction. Effective material properties of the two-phase composites, a mixture of carbon nanotubes (CNTs) and an isotropic polymer, are calculated using the extended nile of mixture. The first-order shear deformation theory is used to formulate a governing equation for predicting free vibration of laminated functionally graded carbon nanotubes reinforced composite (FG?CNTRC) beams. The governing equation is solved by the finite element method with various boundary conditions. Several numerical tests are perfbnned to investigate the influence of the CNTs volume fractions, CNTs distributions, CNTs orientation angles, boundary conditions, length-to-thickness ratios and the numbers of layers on the frequencies of the laminated FG-CNTRC beams. Moreover, a laminated composite beam combined by various distribution types of CNTs is also studied.