针对存在多名持币用户和节点服务商的基于权益证明(proof of stake,PoS)共识机制的区块链,考虑节点服务商的收益分配方式、安全性均对持币用户的收益具有影响,构建了n人无限策略非合作博弈模型,对持币用户的委托策略进行分析.研究发现,...针对存在多名持币用户和节点服务商的基于权益证明(proof of stake,PoS)共识机制的区块链,考虑节点服务商的收益分配方式、安全性均对持币用户的收益具有影响,构建了n人无限策略非合作博弈模型,对持币用户的委托策略进行分析.研究发现,相较于安全性,持币用户应更加关注节点服务商的收益分配额;当某个节点服务商的收益分配额低于一定阈值时,持币用户应该委托其他节点服务商挖矿;持币用户委托收益的稳定性会随着节点服务商的收益分配额的提高而提高;当持币用户无法完全获得各节点服务商历史收益数据时,风险偏好型持币用户更适合委托PPLNS型节点服务商挖矿,风险规避型持币用户更适合委托FPPS型节点服务商挖矿.展开更多
With respect to multichoice games with a coalition structure,a coalitional value named the generalized symmetric coalitional Banzhaf value is defined,which is an extension of the Shapley value for multichoice games an...With respect to multichoice games with a coalition structure,a coalitional value named the generalized symmetric coalitional Banzhaf value is defined,which is an extension of the Shapley value for multichoice games and the symmetric coalitional Banzhaf value for traditional games with a coalition structure.Two axiomatic systems are established:One is enlightened by the characterizations for the symmetric coalitional Banzhaf value,and the other is inspired by the characterizations for the Banzhaf value.展开更多
文摘针对存在多名持币用户和节点服务商的基于权益证明(proof of stake,PoS)共识机制的区块链,考虑节点服务商的收益分配方式、安全性均对持币用户的收益具有影响,构建了n人无限策略非合作博弈模型,对持币用户的委托策略进行分析.研究发现,相较于安全性,持币用户应更加关注节点服务商的收益分配额;当某个节点服务商的收益分配额低于一定阈值时,持币用户应该委托其他节点服务商挖矿;持币用户委托收益的稳定性会随着节点服务商的收益分配额的提高而提高;当持币用户无法完全获得各节点服务商历史收益数据时,风险偏好型持币用户更适合委托PPLNS型节点服务商挖矿,风险规避型持币用户更适合委托FPPS型节点服务商挖矿.
基金supported by the National Natural Science Foundation of China under Grant Nos.71201089,71201110,71271217,and 71271029the Natural Science Foundation Youth Project of Shandong Province,China under Grant No.ZR2012GQ005+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20111101110036the Program for New Century Excellent Talents in University of China under Grant No.NCET-12-0541
文摘With respect to multichoice games with a coalition structure,a coalitional value named the generalized symmetric coalitional Banzhaf value is defined,which is an extension of the Shapley value for multichoice games and the symmetric coalitional Banzhaf value for traditional games with a coalition structure.Two axiomatic systems are established:One is enlightened by the characterizations for the symmetric coalitional Banzhaf value,and the other is inspired by the characterizations for the Banzhaf value.