A lattice Boltzmann model is presented to simulate the deformation and motions of a red blood cell (RBC) in a shear flow. The curvatures of the membrane of a static RBC with different chemical potentiM drops calcula...A lattice Boltzmann model is presented to simulate the deformation and motions of a red blood cell (RBC) in a shear flow. The curvatures of the membrane of a static RBC with different chemical potentiM drops calculated by our model agree with those computed by a shooting method very well. Our simulation results show that in a shear flow, biconcave RBC becomes highly flattened and undergoes tank-treading motion. With intrinsically parallel dynamics, this lattice Boltzmann method is expected to find wide applications to both single and multi-vesicles suspension as well as complex open membranes in various fluid flows for a wide range of Reynolds numbers.展开更多
基金supported by National Natural Science Foundation of China under Grant No. 10747004the Guangxi Science Foundation under Grant Nos. 0640064 and 0542045
文摘A lattice Boltzmann model is presented to simulate the deformation and motions of a red blood cell (RBC) in a shear flow. The curvatures of the membrane of a static RBC with different chemical potentiM drops calculated by our model agree with those computed by a shooting method very well. Our simulation results show that in a shear flow, biconcave RBC becomes highly flattened and undergoes tank-treading motion. With intrinsically parallel dynamics, this lattice Boltzmann method is expected to find wide applications to both single and multi-vesicles suspension as well as complex open membranes in various fluid flows for a wide range of Reynolds numbers.