The chemical characteristics(water-soluble ions and carbonaceous species) of PM2.5 in Guangzhou were measured during a typical haze episode.Most of the chemical species in PM2.5 showed significant difference between...The chemical characteristics(water-soluble ions and carbonaceous species) of PM2.5 in Guangzhou were measured during a typical haze episode.Most of the chemical species in PM2.5 showed significant difference between normal and haze days.The highest contributors to PM2.5 were organic carbon(OC),nitrate,and sulfate in haze days and were OC,sulfate,and elemental carbon(EC) in normal days.The concentrations of secondary species such as,NO3^-,SO4^2-,and NH4^+ in haze days were 6.5,3.9,and 5.3 times higher than those in normal days,respectively,while primary species(EC,Ca^2+,K^+) show similar increase from normal to haze days by a factor about 2.2-2.4.OC/EC ratio ranged from 2.8 to 6.2 with an average of 4.7 and the estimation on a minimum OC/EC ratio showed that SOC(secondary organic carbon) accounted more than 36.6% for the total organic carbon in haze days.The significantly increase in the secondary species(SOC,NO3^-,SO4^2-,and NH4^+),especially in NO3^-,caused the worst air quality in this region.Simultaneously,the result illustrated that the serious air pollution in haze episodes was strongly correlated with the meteorological conditions.During the sampling periods,air pollution and visibility had a good relationship with the air mass transport distance;the shorter air masses transport distance,the worse air quality and visibility in Guangzhou,indicating the strong domination of local sources contributing to haze formation.High concentration of the secondary aerosol in haze episodes was likely due to the higher oxidation rates of sulfur and nitrogen species.展开更多
PM2.5 and gaseous pollutants(SO2,HNO2,HNO3,HCl,and NH3) were simultaneously collected by Partisol- Model 2300 Sequential Speciation Sampler with denuder-filter pack system in the spring of 2013 in Beijing.Water-solubl...PM2.5 and gaseous pollutants(SO2,HNO2,HNO3,HCl,and NH3) were simultaneously collected by Partisol- Model 2300 Sequential Speciation Sampler with denuder-filter pack system in the spring of 2013 in Beijing.Water-soluble inorganic ions and gaseous pollutants were measured by Ion Chromatography.Results showed that the concentrations of NH3,NH+ 4and PM2.5 had similar diurnal variation trends and their concentrations were higher at night than in daytime.The results of gas-to-particle conversion revealed that [NH3]:[NH+4] ratio was usually higher than 1; however,it was less than 1 and the concentration of NH+4 increased significantly during the haze episode,indicating that NH3 played an important role in the formation of fine particle.Research on the sampling artifacts suggested that the volatilization loss of NH+4 was prevalent in the traditional single filter-based sampling.The excess loss of HNO3 and HCl resulted from ammonium-poor aerosols and semivolatile inorganic species had severe losses in the clean day,whereas the mass of NH+ 4was usually overestimated during the single filter-based sampling due to the positive artifacts.Correlation analysis was used to evaluate the influence of meteorological conditions on the volatilization loss of NH+4.It was found that the average relative humidity and temperature had great effects on the loss of NH+4.The loss of NH+4 was significantly under high temperature and low humidity,and tended to increase with the increasing of absorption of gaseous pollutants by denuder.The total mass of volatile loss of NH+4,NO- 3and Cl- could not be ignored and its maximum value was 12.17 μg m-3.Therefore it is important to compensate sampling artifacts for semivolatile inorganic species.展开更多
基金supported by the National Excellent Youth Foundation of China (No. 20625722)the China Postdoctoral Science Foundation (No. 20080430396)
文摘The chemical characteristics(water-soluble ions and carbonaceous species) of PM2.5 in Guangzhou were measured during a typical haze episode.Most of the chemical species in PM2.5 showed significant difference between normal and haze days.The highest contributors to PM2.5 were organic carbon(OC),nitrate,and sulfate in haze days and were OC,sulfate,and elemental carbon(EC) in normal days.The concentrations of secondary species such as,NO3^-,SO4^2-,and NH4^+ in haze days were 6.5,3.9,and 5.3 times higher than those in normal days,respectively,while primary species(EC,Ca^2+,K^+) show similar increase from normal to haze days by a factor about 2.2-2.4.OC/EC ratio ranged from 2.8 to 6.2 with an average of 4.7 and the estimation on a minimum OC/EC ratio showed that SOC(secondary organic carbon) accounted more than 36.6% for the total organic carbon in haze days.The significantly increase in the secondary species(SOC,NO3^-,SO4^2-,and NH4^+),especially in NO3^-,caused the worst air quality in this region.Simultaneously,the result illustrated that the serious air pollution in haze episodes was strongly correlated with the meteorological conditions.During the sampling periods,air pollution and visibility had a good relationship with the air mass transport distance;the shorter air masses transport distance,the worse air quality and visibility in Guangzhou,indicating the strong domination of local sources contributing to haze formation.High concentration of the secondary aerosol in haze episodes was likely due to the higher oxidation rates of sulfur and nitrogen species.
基金supported by the National Natural Science Foundation of China(Grant Nos.41105111,41275134)the Major Program of National Natural Science Foundation of China(Grant No.21190054)+1 种基金Innovative Research Groups of National Natural Science Foundation of China(Grant No.21221004)the R&D Special Fund for Environmental Public Welfare Industry(Grant No.201309009)
文摘PM2.5 and gaseous pollutants(SO2,HNO2,HNO3,HCl,and NH3) were simultaneously collected by Partisol- Model 2300 Sequential Speciation Sampler with denuder-filter pack system in the spring of 2013 in Beijing.Water-soluble inorganic ions and gaseous pollutants were measured by Ion Chromatography.Results showed that the concentrations of NH3,NH+ 4and PM2.5 had similar diurnal variation trends and their concentrations were higher at night than in daytime.The results of gas-to-particle conversion revealed that [NH3]:[NH+4] ratio was usually higher than 1; however,it was less than 1 and the concentration of NH+4 increased significantly during the haze episode,indicating that NH3 played an important role in the formation of fine particle.Research on the sampling artifacts suggested that the volatilization loss of NH+4 was prevalent in the traditional single filter-based sampling.The excess loss of HNO3 and HCl resulted from ammonium-poor aerosols and semivolatile inorganic species had severe losses in the clean day,whereas the mass of NH+ 4was usually overestimated during the single filter-based sampling due to the positive artifacts.Correlation analysis was used to evaluate the influence of meteorological conditions on the volatilization loss of NH+4.It was found that the average relative humidity and temperature had great effects on the loss of NH+4.The loss of NH+4 was significantly under high temperature and low humidity,and tended to increase with the increasing of absorption of gaseous pollutants by denuder.The total mass of volatile loss of NH+4,NO- 3and Cl- could not be ignored and its maximum value was 12.17 μg m-3.Therefore it is important to compensate sampling artifacts for semivolatile inorganic species.