We consider the compound binomial model in a Markovian environment presented by Cossette et al.(2004). We modify the model via assuming that the company receives interest on the surplus and a positive real-valued prem...We consider the compound binomial model in a Markovian environment presented by Cossette et al.(2004). We modify the model via assuming that the company receives interest on the surplus and a positive real-valued premium per unit time, and introducing a control strategy of periodic dividend payments. A Markov decision problem arises and the control objective is to maximize the cumulative expected discounted dividends paid to the shareholders until ruin minus a discounted penalty for ruin. We show that under the absence of a ceiling of dividend rates the optimal strategy is a conditional band strategy given the current state of the environment process. Under the presence of a ceiling for dividend rates, the character of the optimal control strategy is given. In addition, we offer an algorithm for the optimal strategy and the optimal value function.Numerical results are provided to illustrate the algorithm and the impact of the penalty.展开更多
基金supported by Hunan Provincial Natural Science Foundation of China(Grant No.14JJ2069)National Natural Science Foundation of China(Grant Nos.6127229411171101 and11371301)
文摘We consider the compound binomial model in a Markovian environment presented by Cossette et al.(2004). We modify the model via assuming that the company receives interest on the surplus and a positive real-valued premium per unit time, and introducing a control strategy of periodic dividend payments. A Markov decision problem arises and the control objective is to maximize the cumulative expected discounted dividends paid to the shareholders until ruin minus a discounted penalty for ruin. We show that under the absence of a ceiling of dividend rates the optimal strategy is a conditional band strategy given the current state of the environment process. Under the presence of a ceiling for dividend rates, the character of the optimal control strategy is given. In addition, we offer an algorithm for the optimal strategy and the optimal value function.Numerical results are provided to illustrate the algorithm and the impact of the penalty.