The signless Laplacian matrix of a graph is the sum of its diagonal matrix of vertex degrees and its adjacency matrix. Li and Feng gave some basic results on the largest eigenvalue and characteristic polynomial of adj...The signless Laplacian matrix of a graph is the sum of its diagonal matrix of vertex degrees and its adjacency matrix. Li and Feng gave some basic results on the largest eigenvalue and characteristic polynomial of adjacency matrix of a graph in 1979. In this paper, we translate these results into the signless Laplacian matrix of a graph and obtain the similar results.展开更多
基金Foundation item: the National Natural Science Foundation of China (No. 10871204) Graduate Innovation Foundation of China University of Petroleum (No. S2008-26).
文摘The signless Laplacian matrix of a graph is the sum of its diagonal matrix of vertex degrees and its adjacency matrix. Li and Feng gave some basic results on the largest eigenvalue and characteristic polynomial of adjacency matrix of a graph in 1979. In this paper, we translate these results into the signless Laplacian matrix of a graph and obtain the similar results.