Catalysts consisting of Zeolite imidazolyl ester skeleton-67(ZIF-67)and graphene oxide(GO)were fabricated through a solvothermal method,followed by etching ZIF-67 with oxygen-rich functional groups on GO in a reductio...Catalysts consisting of Zeolite imidazolyl ester skeleton-67(ZIF-67)and graphene oxide(GO)were fabricated through a solvothermal method,followed by etching ZIF-67 with oxygen-rich functional groups on GO in a reduction atmosphere at 400℃.During this process,an open type of cobalt metal center was formed by the partial vaporization and oxidation of ZIF-67,further reducing to Co and partially combining with oxygen species to amorphous CoOx.Benefiting from the rich functional N,and metal/oxides active centers derived from the calcination process,the synthesized Co/CoOx@NSG-400 showed a low OER overpotential of 10 mA·cm^(-2) at 298 mV,and an ORR half-wave potential of 0.8 V,which demonstrated its excellent bifunctional catalytic activity.Such a controllable calcination strategy with high yields could be expected to pave the way for synthesizing low-cost and efficient bifunctional electrocatalysts.展开更多
基金Funded in part by the National Natural Science Foundation of China(No.22279096)the Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120072)the Guangdong Key R&D Program(No.2020B0909040001)。
文摘Catalysts consisting of Zeolite imidazolyl ester skeleton-67(ZIF-67)and graphene oxide(GO)were fabricated through a solvothermal method,followed by etching ZIF-67 with oxygen-rich functional groups on GO in a reduction atmosphere at 400℃.During this process,an open type of cobalt metal center was formed by the partial vaporization and oxidation of ZIF-67,further reducing to Co and partially combining with oxygen species to amorphous CoOx.Benefiting from the rich functional N,and metal/oxides active centers derived from the calcination process,the synthesized Co/CoOx@NSG-400 showed a low OER overpotential of 10 mA·cm^(-2) at 298 mV,and an ORR half-wave potential of 0.8 V,which demonstrated its excellent bifunctional catalytic activity.Such a controllable calcination strategy with high yields could be expected to pave the way for synthesizing low-cost and efficient bifunctional electrocatalysts.