Peanut diseases seriously threaten peanut production, creating disease-resistant materials via interspecific hybridization is an effective way to deal with this problem. In this study, the embryo of an interspecific F...Peanut diseases seriously threaten peanut production, creating disease-resistant materials via interspecific hybridization is an effective way to deal with this problem. In this study, the embryo of an interspecific F1 hybrid was obtained by crossing the Silihong(Slh) cultivar with Arachis duranensis(ZW55), a diploid wild species. Seedlings were generated by embryo rescue and tissue culture. A true interspecific hybrid was then confirmed by cytological methods and molecular markers. After treating seedlings with colchicine during in vitro multiplication, the established interspecific F1 hybrid produced seeds which were named as Am1210. With oligonucleotide fluorescence in situ hybridization(Oligo FISH), molecular marker evaluations, morphological and web blotch resistance characterization, we found that: 1) Am1210 was an allohexaploid between Slh and ZW55;2) the traits of spreading lateral branches, single-seeded or double-seeded pods and red seed coats were observed to be dominant compared to the erect type, multiple-seeded pods and brown seed coats;3) the web blotch resistance of Am1210 was significantly improved than that of Slh, indicating the contribution of the web blotch resistance from the wild parent A. duranensis. In addition, 69 dominant and co-dominant molecular markers were developed which could be both used to verify the hybrid in this study and to identify translocation or introgression lines with A. duranensis chromosome fragments in future studies as well.展开更多
Interspecific hybridization is an important approach to improve cultivated peanut varieties. Cytological markers such as tandem repeats will facilitate alien gene introgression in peanut. Telomeric repeats have also b...Interspecific hybridization is an important approach to improve cultivated peanut varieties. Cytological markers such as tandem repeats will facilitate alien gene introgression in peanut. Telomeric repeats have also been frequently used in chromosome research. Most plant telomeric repeats are(TTTAGGG)n that are mainly distributed at the chromosome ends, although interstitial telomeric repeats(ITRs) are also commonly identified. In this study, the telomeric repeat was chromosomally localized in 10 Arachis species through sequential GISH(genomic in situ hybridization) and FISH(fluorescence in situ hybridization) combined with 4',6-diamidino-2-phenylindole(DAPI) staining. Six ITRs were identified such as in the centromeric region of chromosome Bi5 in Arachis ipa?nsis, pericentromeric regions of chromosomes As5 in A. stenosperma, Bho7 in A. hoehnei and Av5 in A. villosa, nucleolar organizer regions of chromosomes As3 in A. stenosperma and Adi3 in A. diogoi, subtelomeric regions of chromosomes Bho9 in A. hoehnei and Adu7 in A. duranensis, and telomeric region of chromosome Es7 in A. stenophylla. The distributions of the telomeric repeat, 5S r DNA, 45 S r DNA and DAPI staining pattern provided not only ways of distinguishing different chromosomes, but also karyotypes with a higher resolution that could be used in evolutionary genome research. The distribution of telomeric repeats, 5S r DNA and 45 S r DNA sites in this study, along with inversions detected on the long arms of chromosomes Kb10 and Bho10, indicated frequent chromosomal rearrangements during evolution of Arachis species.展开更多
基金supported by the national natural Science Foundation of China (31801397)the Henan Province Young Talents Lifting Project,China (2018HYTP003)+2 种基金the Independent Innovation Foundation of Henan Academy of Agricultural Sciences,China (2019ZC13)the earmarked fund for China Agriculture Research System (CARS-13)the Henan Provincial Agriculture Research System,China (S2012-05)。
文摘Peanut diseases seriously threaten peanut production, creating disease-resistant materials via interspecific hybridization is an effective way to deal with this problem. In this study, the embryo of an interspecific F1 hybrid was obtained by crossing the Silihong(Slh) cultivar with Arachis duranensis(ZW55), a diploid wild species. Seedlings were generated by embryo rescue and tissue culture. A true interspecific hybrid was then confirmed by cytological methods and molecular markers. After treating seedlings with colchicine during in vitro multiplication, the established interspecific F1 hybrid produced seeds which were named as Am1210. With oligonucleotide fluorescence in situ hybridization(Oligo FISH), molecular marker evaluations, morphological and web blotch resistance characterization, we found that: 1) Am1210 was an allohexaploid between Slh and ZW55;2) the traits of spreading lateral branches, single-seeded or double-seeded pods and red seed coats were observed to be dominant compared to the erect type, multiple-seeded pods and brown seed coats;3) the web blotch resistance of Am1210 was significantly improved than that of Slh, indicating the contribution of the web blotch resistance from the wild parent A. duranensis. In addition, 69 dominant and co-dominant molecular markers were developed which could be both used to verify the hybrid in this study and to identify translocation or introgression lines with A. duranensis chromosome fragments in future studies as well.
基金supported by the China Agriculture Research System(CARS-14)the Henan Provincial Agriculture Research System,China(S2012-05)the Major Technology Research and Development Program of Henan Province,China(141100110600)
文摘Interspecific hybridization is an important approach to improve cultivated peanut varieties. Cytological markers such as tandem repeats will facilitate alien gene introgression in peanut. Telomeric repeats have also been frequently used in chromosome research. Most plant telomeric repeats are(TTTAGGG)n that are mainly distributed at the chromosome ends, although interstitial telomeric repeats(ITRs) are also commonly identified. In this study, the telomeric repeat was chromosomally localized in 10 Arachis species through sequential GISH(genomic in situ hybridization) and FISH(fluorescence in situ hybridization) combined with 4',6-diamidino-2-phenylindole(DAPI) staining. Six ITRs were identified such as in the centromeric region of chromosome Bi5 in Arachis ipa?nsis, pericentromeric regions of chromosomes As5 in A. stenosperma, Bho7 in A. hoehnei and Av5 in A. villosa, nucleolar organizer regions of chromosomes As3 in A. stenosperma and Adi3 in A. diogoi, subtelomeric regions of chromosomes Bho9 in A. hoehnei and Adu7 in A. duranensis, and telomeric region of chromosome Es7 in A. stenophylla. The distributions of the telomeric repeat, 5S r DNA, 45 S r DNA and DAPI staining pattern provided not only ways of distinguishing different chromosomes, but also karyotypes with a higher resolution that could be used in evolutionary genome research. The distribution of telomeric repeats, 5S r DNA and 45 S r DNA sites in this study, along with inversions detected on the long arms of chromosomes Kb10 and Bho10, indicated frequent chromosomal rearrangements during evolution of Arachis species.