The highly-efficient dry separation technique using a gas-solid fluidized bed is very beneficial for increasing coal grade and optimizing the utilization of coal resources.The size distribution of the solid medium(e.g...The highly-efficient dry separation technique using a gas-solid fluidized bed is very beneficial for increasing coal grade and optimizing the utilization of coal resources.The size distribution of the solid medium(e.g.,magnetite powder) used in this technique is one of key factors that influences fluidization and separation performance.It is,therefore,urgent to prepare medium in a way that operates at low cost and high efficiency.Grinding experiments were performed using a planetary ball mill equipped with a frequency converter.The effect of fed mass,rotation frequency of the mill,grinding time and the ball-size ratio on grinding performance was investigated.The grinding parameters were optimized by numerical calculations using Artificial Neural Network(ANN) in Matlab.A regression equation for predicting the yield of the desired product(i.e.,0.3~0.15 mm magnetite powder) is proposed.The maximum yield of 0.3~0.15 mm particles was 47.24%.This lays a foundation for the industrial-scale production of the solid medium required for separation with a magnetite-powder fluidized bed.展开更多
A liquid-solid fluidized bed separator, used for the separation of coarse slime, was developed. Test parti- cles sized in the range from 0.25 to 0.5, 0.5 to 1.0, and 0.25 to 1.0 mm were separated in the liquid-solid f...A liquid-solid fluidized bed separator, used for the separation of coarse slime, was developed. Test parti- cles sized in the range from 0.25 to 0.5, 0.5 to 1.0, and 0.25 to 1.0 mm were separated in the liquid-solid fluidized bed. Beds with column heights of 1200, 1500, and 1800 mm were tried. The clean coal and the railings were subsequently analyzed by float-sink testing. The results showed that the ash and yield of clean coal both decreased with increasing column height, for all three size fractions, and that the ash of the clean coal obtained from tests on the broader size fraction was less than that from the narrower sized fractions. The separation density decreased with increasing column height. The lowest E value was seen for a column height of 1500 ram, for which conditions the separation density was 1.45 g/cm3. The E value was 0.084 for the 0.25-0.5 mm fraction but the corresponding separation density was 1.48 g/cm3, and the E value 0.089, for the broader 0.25-1.0 mm fraction.展开更多
Wide-size-range medium-solids are used in a modularized coal beneficiation demonstration system with a gas-solid fluidized bed. The characteristics of fluidization and dry-beneficiation of the medium solids were studi...Wide-size-range medium-solids are used in a modularized coal beneficiation demonstration system with a gas-solid fluidized bed. The characteristics of fluidization and dry-beneficiation of the medium solids were studied. The numerical simulation results show that 0.15–0.06 mm fine magnetite powder can decrease the disturbances caused by the bubbles. This is beneficial to the uniformity of the gas-solid interactions and thus to the uniformity and stability of the bed density and height. The experimental results show that, with an increase in the fine coal content in medium solids, both the fluidization quality and the beneficiation performance of the bed decreased gradually. When the fine coal content was no more than 13%, a relatively high superficial gas velocity increased the beneficiation efficiency. When the content was more than 13%, part of the fine coal was separated, leading to product layers. The separation efficiency was therefore gradually decreased. The models for predicting the bed density standard deviation and the probable error, E, value were both proposed. The E value can reach to 0.04–0.07 g/cm^3 under the optimized experimental parameters. This work provides a foundation for the adjustment of the bed density and the separation performance of the modularized 40–60 ton per hour dry coalbeneficiation industrial system.展开更多
基金supported by the National Natural Science Foundation of China (Nos.50921002 and 90510002)the National High Technology Research and Development Program of China (No.2007AA05Z318)
文摘The highly-efficient dry separation technique using a gas-solid fluidized bed is very beneficial for increasing coal grade and optimizing the utilization of coal resources.The size distribution of the solid medium(e.g.,magnetite powder) used in this technique is one of key factors that influences fluidization and separation performance.It is,therefore,urgent to prepare medium in a way that operates at low cost and high efficiency.Grinding experiments were performed using a planetary ball mill equipped with a frequency converter.The effect of fed mass,rotation frequency of the mill,grinding time and the ball-size ratio on grinding performance was investigated.The grinding parameters were optimized by numerical calculations using Artificial Neural Network(ANN) in Matlab.A regression equation for predicting the yield of the desired product(i.e.,0.3~0.15 mm magnetite powder) is proposed.The maximum yield of 0.3~0.15 mm particles was 47.24%.This lays a foundation for the industrial-scale production of the solid medium required for separation with a magnetite-powder fluidized bed.
基金supports for this work provided by the National Natural Science Foundation of China (No. 50974120)the Fundamental Research Funds for the Central Universities (No.2010QNB08)
文摘A liquid-solid fluidized bed separator, used for the separation of coarse slime, was developed. Test parti- cles sized in the range from 0.25 to 0.5, 0.5 to 1.0, and 0.25 to 1.0 mm were separated in the liquid-solid fluidized bed. Beds with column heights of 1200, 1500, and 1800 mm were tried. The clean coal and the railings were subsequently analyzed by float-sink testing. The results showed that the ash and yield of clean coal both decreased with increasing column height, for all three size fractions, and that the ash of the clean coal obtained from tests on the broader size fraction was less than that from the narrower sized fractions. The separation density decreased with increasing column height. The lowest E value was seen for a column height of 1500 ram, for which conditions the separation density was 1.45 g/cm3. The E value was 0.084 for the 0.25-0.5 mm fraction but the corresponding separation density was 1.48 g/cm3, and the E value 0.089, for the broader 0.25-1.0 mm fraction.
基金financially supported by the National Program on Key Basic Research Project of China (No.2012CB214904)the National Natural Science Foundation of China (Nos.51221462,51134022 and 51174203)
文摘Wide-size-range medium-solids are used in a modularized coal beneficiation demonstration system with a gas-solid fluidized bed. The characteristics of fluidization and dry-beneficiation of the medium solids were studied. The numerical simulation results show that 0.15–0.06 mm fine magnetite powder can decrease the disturbances caused by the bubbles. This is beneficial to the uniformity of the gas-solid interactions and thus to the uniformity and stability of the bed density and height. The experimental results show that, with an increase in the fine coal content in medium solids, both the fluidization quality and the beneficiation performance of the bed decreased gradually. When the fine coal content was no more than 13%, a relatively high superficial gas velocity increased the beneficiation efficiency. When the content was more than 13%, part of the fine coal was separated, leading to product layers. The separation efficiency was therefore gradually decreased. The models for predicting the bed density standard deviation and the probable error, E, value were both proposed. The E value can reach to 0.04–0.07 g/cm^3 under the optimized experimental parameters. This work provides a foundation for the adjustment of the bed density and the separation performance of the modularized 40–60 ton per hour dry coalbeneficiation industrial system.