Structural equation model(SEM) is a multivariate analysis tool that has been widely applied to many fields such as biomedical and social sciences. In the traditional SEM, it is often assumed that random errors and exp...Structural equation model(SEM) is a multivariate analysis tool that has been widely applied to many fields such as biomedical and social sciences. In the traditional SEM, it is often assumed that random errors and explanatory latent variables follow the normal distribution, and the effect of explanatory latent variables on outcomes can be formulated by a mean regression-type structural equation. But this SEM may be inappropriate in some cases where random errors or latent variables are highly nonnormal. The authors develop a new SEM, called as quantile SEM(QSEM), by allowing for a quantile regression-type structural equation and without distribution assumption of random errors and latent variables. A Bayesian empirical likelihood(BEL) method is developed to simultaneously estimate parameters and latent variables based on the estimating equation method. A hybrid algorithm combining the Gibbs sampler and Metropolis-Hastings algorithm is presented to sample observations required for statistical inference. Latent variables are imputed by the estimated density function and the linear interpolation method. A simulation study and an example are presented to investigate the performance of the proposed methodologies.展开更多
This paper considers the estimation problem of distribution functions and quantiles with nonignorable missing response data. Three approaches are developed to estimate distribution functions and quantiles, i.e., the H...This paper considers the estimation problem of distribution functions and quantiles with nonignorable missing response data. Three approaches are developed to estimate distribution functions and quantiles, i.e., the Horvtiz-Thompson-type method, regression imputation method and augmented inverse probability weighted approach. The propensity score is specified by a semiparametric expo- nential tilting model. To estimate the tilting parameter in the propensity score, the authors propose an adjusted empirical likelihood method to deal with the over-identified system. Under some regular conditions, the authors investigate the asymptotic properties of the proposed three estimators for distri- bution functions and quantiles, and find that these estimators have the same asymptotic variance. The jackknife method is employed to consistently estimate the asymptotic variances. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies.展开更多
Semiparametric reproductive dispersion nonlinear model (SRDNM) is an extension of nonlinear reproductive dispersion models and semiparametric nonlinear regression models, and includes semiparametric nonlinear model an...Semiparametric reproductive dispersion nonlinear model (SRDNM) is an extension of nonlinear reproductive dispersion models and semiparametric nonlinear regression models, and includes semiparametric nonlinear model and semiparametric generalized linear model as its special cases. Based on the local kernel estimate of nonparametric component, profile-kernel and backfitting estimators of parameters of interest are proposed in SRDNM, and theoretical comparison of both estimators is also investigated in this paper. Under some regularity conditions, strong consistency and asymptotic normality of two estimators are proved. It is shown that the backfitting method produces a larger asymptotic variance than that for the profile-kernel method. A simulation study and a real example are used to illustrate the proposed methodologies.展开更多
基金supported by the National Natural Science Foundation of China under Grant No.11165016
文摘Structural equation model(SEM) is a multivariate analysis tool that has been widely applied to many fields such as biomedical and social sciences. In the traditional SEM, it is often assumed that random errors and explanatory latent variables follow the normal distribution, and the effect of explanatory latent variables on outcomes can be formulated by a mean regression-type structural equation. But this SEM may be inappropriate in some cases where random errors or latent variables are highly nonnormal. The authors develop a new SEM, called as quantile SEM(QSEM), by allowing for a quantile regression-type structural equation and without distribution assumption of random errors and latent variables. A Bayesian empirical likelihood(BEL) method is developed to simultaneously estimate parameters and latent variables based on the estimating equation method. A hybrid algorithm combining the Gibbs sampler and Metropolis-Hastings algorithm is presented to sample observations required for statistical inference. Latent variables are imputed by the estimated density function and the linear interpolation method. A simulation study and an example are presented to investigate the performance of the proposed methodologies.
基金supported by the National Natural Science Foundation of China under Grant Nos.11671349 and 11601195the Scientific Research Innovation Team of Yunnan Province under Grant No.2015HC028the Natural Science Foundation of Jiangsu Province of China under Grant No.BK20160289
文摘This paper considers the estimation problem of distribution functions and quantiles with nonignorable missing response data. Three approaches are developed to estimate distribution functions and quantiles, i.e., the Horvtiz-Thompson-type method, regression imputation method and augmented inverse probability weighted approach. The propensity score is specified by a semiparametric expo- nential tilting model. To estimate the tilting parameter in the propensity score, the authors propose an adjusted empirical likelihood method to deal with the over-identified system. Under some regular conditions, the authors investigate the asymptotic properties of the proposed three estimators for distri- bution functions and quantiles, and find that these estimators have the same asymptotic variance. The jackknife method is employed to consistently estimate the asymptotic variances. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies.
基金supported by National Natural Science Foundation of China (Grant Nos. 10561008, 10761011)Natural Science Foundation of Department of Education of Zhejiang Province (Grant No. Y200805073)+1 种基金PhD Special Scientific Research Foundation of Chinese University (Grant No. 20060673002)Program for New Century Excellent Talents in University (Grant No. NCET-07-0737)
文摘Semiparametric reproductive dispersion nonlinear model (SRDNM) is an extension of nonlinear reproductive dispersion models and semiparametric nonlinear regression models, and includes semiparametric nonlinear model and semiparametric generalized linear model as its special cases. Based on the local kernel estimate of nonparametric component, profile-kernel and backfitting estimators of parameters of interest are proposed in SRDNM, and theoretical comparison of both estimators is also investigated in this paper. Under some regularity conditions, strong consistency and asymptotic normality of two estimators are proved. It is shown that the backfitting method produces a larger asymptotic variance than that for the profile-kernel method. A simulation study and a real example are used to illustrate the proposed methodologies.