Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective approach for iodine supplementation,especially for aromatic rice.Field experiments were conducted during the early growing se...Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective approach for iodine supplementation,especially for aromatic rice.Field experiments were conducted during the early growing seasons of 2021 and 2022 to evaluate the impacts of foliar application of iodine fertilizer on aromatic rice and to explore the optimal iodine fertilizer concentration.At the full heading stage,six different concentrations of sodium iodide solutions of 0%(CK),0.010%(T1),0.025%(T2),0.050%(T3),0.075%(T4),and 0.100%(T5)were applied to indica aromatic rice cultivars Meixiangzhan 2 and Xiangyaxiangzhan.The results showed that sodium iodide treatments significantly increased the iodine and sodium contents in both leaves and grains.Compared with the CK,the T1 and T2 treatments increased the 2-acetyl-1-pyrroline(2-AP)content in mature grains by 8.41%-101.66%and 13.58%-74.60%,respectively.Improvements in the contents of 1-pyrroline-5-carboxylic acid,proline,1-pyrroline,and methylglyoxal,as well as the activity of proline dehydrogenase were also detected.Additionally,sodium iodide treatments remarkably decreased the chalky grain rate,chalkiness area,and chalkiness degree of aromatic rice,with the T2 treatment exhibiting a 17.79%-47.42%decrease in chalkiness degree compared with the CK.Meanwhile,T1 and T2 treatments showed beneficial impacts on chlorophyll content,photosynthetic characteristics,and yield components,while T3,T4,and T5 treatments exhibited adverse effects on leaf and grain yields.The linear discriminant analysis revealed significant differences between treatments.The correlation analysis and piecewise structural equation modeling showed that the iodine and sodium influenced the photosynthetic characteristics and chlorophyll content of the leaves,thereby regulating the 2-AP biosynthesis and yield components,ultimately affecting the 2-AP content and yield.Overall,this study suggests that foliar application of 0.025%sodium iodide is an effective method to enrich the iodine content in rice grains,improve the grain aroma and appearance quality of aromatic rice,without detrimental effects on grain yield.展开更多
【目的】研究液体肥分蘖期减氮侧深施用和常规全量撒施固体肥对香稻关键生育期氮素吸收利用、干物质积累和氮代谢生理影响及其与香稻产量形成的关系,以期为今后华南香稻种植区分蘖期机械化侧深施液体肥提供理论指导和依据。【方法】2019...【目的】研究液体肥分蘖期减氮侧深施用和常规全量撒施固体肥对香稻关键生育期氮素吸收利用、干物质积累和氮代谢生理影响及其与香稻产量形成的关系,以期为今后华南香稻种植区分蘖期机械化侧深施液体肥提供理论指导和依据。【方法】2019—2020年连续进行2年大田试验,以华南地区种植面积较大的香稻品种玉香油占和象牙香占为供试材料,采用随机区组排列设计。设置了全程不施肥处理(T1)、常规全量撒施肥固体肥处理(T2,总施氮量为150 kg N·hm^(-2))、液体肥分蘖期减氮10%侧深施处理(T3)和液体肥分蘖期减氮20%侧深施处理(T4)4个处理。研究了不同施肥处理对香稻的产量及其构成因素、氮素吸收利用、干物质积累和氮代谢生理的影响。【结果】(1)2年大田试验中,2个香稻品种均在T3处理下产量最高,且显著高于T1处理。与T2处理相比,T3处理下玉香油占2019年和2020年的产量分别提高1.84%和15.20%,象牙香占2019年和2020年的产量分别提高0.65%和3.71%。这主要与T3处理下具有最高的有效穗数有关。(2)2年大田试验中,在幼穗分化期和抽穗期,2个香稻品种的总干物质积累量、叶面积指数和总氮素积累量普遍在T2处理下最高,T3处理和T2处理间的总干物质积累量和总氮素积累量差异不显著。在成熟期,2个香稻品种的总干物质积累量、叶面积指数和总氮素积累量均在T3处理下最高;对玉香油占而言,2019年成熟期T3处理下的总干物质积累量、叶面积指数和总氮素积累量分别较T2处理增加25.14%、26.57%和21.31%,2020年的相应增幅分别为5.83%、21.80%和46.47%;对象牙香占而言,2019年成熟期T3处理下的总干物质积累量、叶面积指数和总氮素积累量分别较T2处理增加19.95%、3.73%和13.41%,2020年相应增幅为21.17%、1.78%和14.37%。此外,2个香稻品种的氮素吸收利用率和氮素农学利用率也均在T3处理下最高。(3)在幼穗分化期和抽穗期,2个香稻品种在T2处理下较其他处理相比有较高的氮代谢相关酶活性,而成熟期T3处理下2个香稻品种的氮代谢相关酶活性最高。【结论】综合2年大田试验表明,液体肥分蘖期减氮10%侧深施处理较常规全量撒施固体肥处理,在减少氮肥使用的同时能维持生育前期生长发育,提高生育后期总干物质积累量、叶面积指数、氮素利用和氮代谢相关酶活性,最终实现香稻增产。展开更多
To assess the effects of straw return coupled with deep nitrogen(N)fertilization on grain yield and N use efficiency(NUE)in mechanical pot-seedling transplanting(MPST)rice,the seedlings of two rice cultivars,i.e.,Yuxi...To assess the effects of straw return coupled with deep nitrogen(N)fertilization on grain yield and N use efficiency(NUE)in mechanical pot-seedling transplanting(MPST)rice,the seedlings of two rice cultivars,i.e.,Yuxiangyouzhan and Wufengyou 615 transplanted by MPST were applied with N fertilizer at 150 kg/hm2 and straw return at 6 t/hm2 in early seasons of 2019 and 2020.The experiment comprised of following treatments:CK(no fertilizer and no straw return),MDS(deep N fertilization and straw return),MBS(broadcasting fertilizer and straw return),MD(deep N fertilization without straw return),MB(broadcasting fertilizer without straw return).Results depicted that the MDS treatment significantly increased the rice yield by 41.69%-72.22%due to total above-ground biomass,leaf area index and photosynthesis increased by 54.70%-55.80%,38.52%-52.17%and 17.89%-28.40%,respectively,compared to the MB treatment.In addition,the MDS treatment enhanced the total N accumulation by 37.74%-43.69%,N recovery efficiency by 141.45%-164.65%,N agronomic efficiency by 121.76%-134.19%,nitrate reductase by 46.46%-60.86%and glutamine synthetase by 23.56%-31.02%,compared to the MB treatment.The average grain yield and NUE in both years for Yuxiangyouzhan were higher in the MDS treatment than in the MD treatment.Hence,deep N fertilization combined with straw return can be an innovative technique with improved grain yield and NUE in MPST in South China.展开更多
Epoxiconazole is a triazole compound.However,the effects of epoxiconazole on crop productivity and quality were rarely reported.In this study,we investigated the effects of epoxiconazole application on yield formation...Epoxiconazole is a triazole compound.However,the effects of epoxiconazole on crop productivity and quality were rarely reported.In this study,we investigated the effects of epoxiconazole application on yield formation,grain quality attributes,and 2-acetyl-1-pyrroline(2-AP)content in fragrant rice.A three-year field experiment was carried out with a fragrant rice variety,Meixiangzhan 2.At the heading stage,0,0.02,0.04,0.08,0.16 and 0.32 g/L epoxiconazole solutions were foliar applied to fragrant rice plants,respectively.The results showed that epoxiconazole application significantly increased grain yield,seed-setting rate and 1000-grain weight.Chlorophyll content and net photosynthetic rate of fragrant rice during the grain-filling stage significantly increased due to epoxiconazole application.Foliar application of epoxiconazole at 0.08 g/L increased grain protein content and decreased both chalky rice rate and chalkiness area ratio of fragrant rice.Epoxiconazole also substantially increased grain 2-AP content by inducing the regulation in contents of related synthetic precursors,including proline,pyrroline-5-carboxylic acid,Δ1-pyrroline and methylglyoxal.Overall,foliar application of epoxiconazole could be used for the improvement in grain yield,grain quality and 2-AP content in fragrant rice production when applied concentration at 0.08-0.32 g/L.Our findings provided the new roles of epoxiconazole in crop production.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.31971843)the Technology System of Modern Agricultural Industry in Guangdong Province,China(Grant No.2020KJ105)+1 种基金the Guangzhou Science and Technology Project,Guangdong Province,China(Grant No.202103000075)the Special Rural Revitalization Funds of Guangdong Province,China(Grant No.2021KJ382)。
文摘Applying iodine fertilizers to cultivate iodine-rich crops for daily intake is an effective approach for iodine supplementation,especially for aromatic rice.Field experiments were conducted during the early growing seasons of 2021 and 2022 to evaluate the impacts of foliar application of iodine fertilizer on aromatic rice and to explore the optimal iodine fertilizer concentration.At the full heading stage,six different concentrations of sodium iodide solutions of 0%(CK),0.010%(T1),0.025%(T2),0.050%(T3),0.075%(T4),and 0.100%(T5)were applied to indica aromatic rice cultivars Meixiangzhan 2 and Xiangyaxiangzhan.The results showed that sodium iodide treatments significantly increased the iodine and sodium contents in both leaves and grains.Compared with the CK,the T1 and T2 treatments increased the 2-acetyl-1-pyrroline(2-AP)content in mature grains by 8.41%-101.66%and 13.58%-74.60%,respectively.Improvements in the contents of 1-pyrroline-5-carboxylic acid,proline,1-pyrroline,and methylglyoxal,as well as the activity of proline dehydrogenase were also detected.Additionally,sodium iodide treatments remarkably decreased the chalky grain rate,chalkiness area,and chalkiness degree of aromatic rice,with the T2 treatment exhibiting a 17.79%-47.42%decrease in chalkiness degree compared with the CK.Meanwhile,T1 and T2 treatments showed beneficial impacts on chlorophyll content,photosynthetic characteristics,and yield components,while T3,T4,and T5 treatments exhibited adverse effects on leaf and grain yields.The linear discriminant analysis revealed significant differences between treatments.The correlation analysis and piecewise structural equation modeling showed that the iodine and sodium influenced the photosynthetic characteristics and chlorophyll content of the leaves,thereby regulating the 2-AP biosynthesis and yield components,ultimately affecting the 2-AP content and yield.Overall,this study suggests that foliar application of 0.025%sodium iodide is an effective method to enrich the iodine content in rice grains,improve the grain aroma and appearance quality of aromatic rice,without detrimental effects on grain yield.
文摘【目的】研究液体肥分蘖期减氮侧深施用和常规全量撒施固体肥对香稻关键生育期氮素吸收利用、干物质积累和氮代谢生理影响及其与香稻产量形成的关系,以期为今后华南香稻种植区分蘖期机械化侧深施液体肥提供理论指导和依据。【方法】2019—2020年连续进行2年大田试验,以华南地区种植面积较大的香稻品种玉香油占和象牙香占为供试材料,采用随机区组排列设计。设置了全程不施肥处理(T1)、常规全量撒施肥固体肥处理(T2,总施氮量为150 kg N·hm^(-2))、液体肥分蘖期减氮10%侧深施处理(T3)和液体肥分蘖期减氮20%侧深施处理(T4)4个处理。研究了不同施肥处理对香稻的产量及其构成因素、氮素吸收利用、干物质积累和氮代谢生理的影响。【结果】(1)2年大田试验中,2个香稻品种均在T3处理下产量最高,且显著高于T1处理。与T2处理相比,T3处理下玉香油占2019年和2020年的产量分别提高1.84%和15.20%,象牙香占2019年和2020年的产量分别提高0.65%和3.71%。这主要与T3处理下具有最高的有效穗数有关。(2)2年大田试验中,在幼穗分化期和抽穗期,2个香稻品种的总干物质积累量、叶面积指数和总氮素积累量普遍在T2处理下最高,T3处理和T2处理间的总干物质积累量和总氮素积累量差异不显著。在成熟期,2个香稻品种的总干物质积累量、叶面积指数和总氮素积累量均在T3处理下最高;对玉香油占而言,2019年成熟期T3处理下的总干物质积累量、叶面积指数和总氮素积累量分别较T2处理增加25.14%、26.57%和21.31%,2020年的相应增幅分别为5.83%、21.80%和46.47%;对象牙香占而言,2019年成熟期T3处理下的总干物质积累量、叶面积指数和总氮素积累量分别较T2处理增加19.95%、3.73%和13.41%,2020年相应增幅为21.17%、1.78%和14.37%。此外,2个香稻品种的氮素吸收利用率和氮素农学利用率也均在T3处理下最高。(3)在幼穗分化期和抽穗期,2个香稻品种在T2处理下较其他处理相比有较高的氮代谢相关酶活性,而成熟期T3处理下2个香稻品种的氮代谢相关酶活性最高。【结论】综合2年大田试验表明,液体肥分蘖期减氮10%侧深施处理较常规全量撒施固体肥处理,在减少氮肥使用的同时能维持生育前期生长发育,提高生育后期总干物质积累量、叶面积指数、氮素利用和氮代谢相关酶活性,最终实现香稻增产。
基金supported by the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2021A1515011255)Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B020221003)National Natural Science Foundation of China(Grant No.31471442)。
文摘To assess the effects of straw return coupled with deep nitrogen(N)fertilization on grain yield and N use efficiency(NUE)in mechanical pot-seedling transplanting(MPST)rice,the seedlings of two rice cultivars,i.e.,Yuxiangyouzhan and Wufengyou 615 transplanted by MPST were applied with N fertilizer at 150 kg/hm2 and straw return at 6 t/hm2 in early seasons of 2019 and 2020.The experiment comprised of following treatments:CK(no fertilizer and no straw return),MDS(deep N fertilization and straw return),MBS(broadcasting fertilizer and straw return),MD(deep N fertilization without straw return),MB(broadcasting fertilizer without straw return).Results depicted that the MDS treatment significantly increased the rice yield by 41.69%-72.22%due to total above-ground biomass,leaf area index and photosynthesis increased by 54.70%-55.80%,38.52%-52.17%and 17.89%-28.40%,respectively,compared to the MB treatment.In addition,the MDS treatment enhanced the total N accumulation by 37.74%-43.69%,N recovery efficiency by 141.45%-164.65%,N agronomic efficiency by 121.76%-134.19%,nitrate reductase by 46.46%-60.86%and glutamine synthetase by 23.56%-31.02%,compared to the MB treatment.The average grain yield and NUE in both years for Yuxiangyouzhan were higher in the MDS treatment than in the MD treatment.Hence,deep N fertilization combined with straw return can be an innovative technique with improved grain yield and NUE in MPST in South China.
基金This study was supported by the National Natural Science Foundation of China(Grant No.31971843)the Technology System of Modern Agricultural Industry in Guangdong(Grant No.2020KJ105)Guangzhou Science and Technology Project in China(Grant No.202103000075).
文摘Epoxiconazole is a triazole compound.However,the effects of epoxiconazole on crop productivity and quality were rarely reported.In this study,we investigated the effects of epoxiconazole application on yield formation,grain quality attributes,and 2-acetyl-1-pyrroline(2-AP)content in fragrant rice.A three-year field experiment was carried out with a fragrant rice variety,Meixiangzhan 2.At the heading stage,0,0.02,0.04,0.08,0.16 and 0.32 g/L epoxiconazole solutions were foliar applied to fragrant rice plants,respectively.The results showed that epoxiconazole application significantly increased grain yield,seed-setting rate and 1000-grain weight.Chlorophyll content and net photosynthetic rate of fragrant rice during the grain-filling stage significantly increased due to epoxiconazole application.Foliar application of epoxiconazole at 0.08 g/L increased grain protein content and decreased both chalky rice rate and chalkiness area ratio of fragrant rice.Epoxiconazole also substantially increased grain 2-AP content by inducing the regulation in contents of related synthetic precursors,including proline,pyrroline-5-carboxylic acid,Δ1-pyrroline and methylglyoxal.Overall,foliar application of epoxiconazole could be used for the improvement in grain yield,grain quality and 2-AP content in fragrant rice production when applied concentration at 0.08-0.32 g/L.Our findings provided the new roles of epoxiconazole in crop production.